If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(a*a)+(a*a)=(315*315)
We move all terms to the left:
(a*a)+(a*a)-((315*315))=0
We add all the numbers together, and all the variables
(+a*a)+(+a*a)-(99225)=0
We add all the numbers together, and all the variables
(+a*a)+(+a*a)-99225=0
We get rid of parentheses
a*a+a*a-99225=0
Wy multiply elements
a^2+a^2-99225=0
We add all the numbers together, and all the variables
2a^2-99225=0
a = 2; b = 0; c = -99225;
Δ = b2-4ac
Δ = 02-4·2·(-99225)
Δ = 793800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{793800}=\sqrt{396900*2}=\sqrt{396900}*\sqrt{2}=630\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-630\sqrt{2}}{2*2}=\frac{0-630\sqrt{2}}{4} =-\frac{630\sqrt{2}}{4} =-\frac{315\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+630\sqrt{2}}{2*2}=\frac{0+630\sqrt{2}}{4} =\frac{630\sqrt{2}}{4} =\frac{315\sqrt{2}}{2} $
| 2(-2x-8)=1 | | (2x)^3/2=27 | | 5x^-3=40 | | -10y-5(1+y)=3(2y-2)-20 | | 11.4+x-7.3=4.5 | | 7/10+x=5/10 | | a^2+a^2=315^2 | | 6x-(5x+9)=3×-21 | | -9-8f=-9f-5 | | 20+8(4-6x)=100 | | 8-2(-7x-6)=2 | | 2x-3(3x-9)=4(3x-8)+8x | | 2/5×1/3x=3 | | 2+89x=180 | | 12=n5 | | 1+3x+4x=9x-1-x | | (x÷8)+23+4=36 | | 2/5×-1/3x=3 | | 5x-10=20+5x | | X+.06x=72379 | | 2x49x+40x=180 | | 34=2n+8 | | 1/5x-4=x-20/5 | | 9x+7=20x | | 15+24+2x=145x=392 | | 6y=30+y | | 1/4x=20+x | | 18x+2=-4+19x | | 4x+5=5x+4/4 | | -6(-6x+3)-3x=1 | | 6-3x=-3(x+4) | | 2/4-6x/10=-22/4 |