(a+1)(a-3)+(2a-3)(5-7a=)

Simple and best practice solution for (a+1)(a-3)+(2a-3)(5-7a=) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (a+1)(a-3)+(2a-3)(5-7a=) equation:



(a+1)(a-3)+(2a-3)(5-7a=)
We move all terms to the left:
(a+1)(a-3)+(2a-3)(5-7a-())=0
We multiply parentheses ..
(+a^2-3a+a-3)+(2a-3)(5-7a-())=0
We calculate terms in parentheses: +(2a-3)(5-7a-()), so:
2a-3)(5-7a-()
determiningTheFunctionDomain 2a-7a-3)(5-()
We add all the numbers together, and all the variables
-5a
Back to the equation:
+(-5a)
We get rid of parentheses
a^2-3a+a-5a-3=0
We add all the numbers together, and all the variables
a^2-7a-3=0
a = 1; b = -7; c = -3;
Δ = b2-4ac
Δ = -72-4·1·(-3)
Δ = 61
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{61}}{2*1}=\frac{7-\sqrt{61}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{61}}{2*1}=\frac{7+\sqrt{61}}{2} $

See similar equations:

| 2x-2+12x-1=0 | | F(x)=4x²-3x+3 | | −7x+3=−25 | | 18=5/2x−12 | | 2x²-15x-9=0 | | X²-4y=0 | | 4(y+2)‐5(y-2)=20 | | 4x‐7=17 | | 40-16b=24 | | 5/x=1/125 | | 5xx=0.008 | | 3x-4x+5-3x=17 | | y^2-32y+8=0 | | 3x=150+1/2x | | x1/2=1/4 | | 2x+3+3=10x+8+8=5x+8+8+8 | | |6y+2+2y+6-8=0| | | 2x+3+3=10x+8+8 | | 6y+2+2y+6-8=0 | | x³-x²=100 | | 6x−5(2x+14)=8−4x | | 6 | | 6 | | 6870=x^2+5x+70 | | 13265=x^2+10x+65 | | x½=¼= | | x½=¼ | | 8105=x^2+10x+30 | | 3(2x1)=21 | | -3(2x1=21 | | 10x²-4x=16 | | (x-1)²(x-5)/x+5=0 |

Equations solver categories