If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (a + 1)(b + 1)(c + 1) = 0 Reorder the terms: (1 + a)(b + 1)(c + 1) = 0 Reorder the terms: (1 + a)(1 + b)(c + 1) = 0 Reorder the terms: (1 + a)(1 + b)(1 + c) = 0 Multiply (1 + a) * (1 + b) (1(1 + b) + a(1 + b))(1 + c) = 0 ((1 * 1 + b * 1) + a(1 + b))(1 + c) = 0 ((1 + 1b) + a(1 + b))(1 + c) = 0 (1 + 1b + (1 * a + b * a))(1 + c) = 0 (1 + 1b + (1a + ab))(1 + c) = 0 Reorder the terms: (1 + 1a + ab + 1b)(1 + c) = 0 (1 + 1a + ab + 1b)(1 + c) = 0 Multiply (1 + 1a + ab + 1b) * (1 + c) (1(1 + c) + 1a * (1 + c) + ab(1 + c) + 1b * (1 + c)) = 0 ((1 * 1 + c * 1) + 1a * (1 + c) + ab(1 + c) + 1b * (1 + c)) = 0 ((1 + 1c) + 1a * (1 + c) + ab(1 + c) + 1b * (1 + c)) = 0 (1 + 1c + (1 * 1a + c * 1a) + ab(1 + c) + 1b * (1 + c)) = 0 (1 + 1c + (1a + 1ac) + ab(1 + c) + 1b * (1 + c)) = 0 (1 + 1c + 1a + 1ac + (1 * ab + c * ab) + 1b * (1 + c)) = 0 (1 + 1c + 1a + 1ac + (1ab + abc) + 1b * (1 + c)) = 0 (1 + 1c + 1a + 1ac + 1ab + abc + (1 * 1b + c * 1b)) = 0 (1 + 1c + 1a + 1ac + 1ab + abc + (1b + 1bc)) = 0 Reorder the terms: (1 + 1a + 1ab + abc + 1ac + 1b + 1bc + 1c) = 0 (1 + 1a + 1ab + abc + 1ac + 1b + 1bc + 1c) = 0 Solving 1 + 1a + 1ab + abc + 1ac + 1b + 1bc + 1c = 0 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + 1a + 1ab + abc + 1ac + 1b + 1bc + -1 + 1c = 0 + -1 Reorder the terms: 1 + -1 + 1a + 1ab + abc + 1ac + 1b + 1bc + 1c = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 1a + 1ab + abc + 1ac + 1b + 1bc + 1c = 0 + -1 1a + 1ab + abc + 1ac + 1b + 1bc + 1c = 0 + -1 Combine like terms: 0 + -1 = -1 1a + 1ab + abc + 1ac + 1b + 1bc + 1c = -1 Add '-1b' to each side of the equation. 1a + 1ab + abc + 1ac + 1b + 1bc + -1b + 1c = -1 + -1b Reorder the terms: 1a + 1ab + abc + 1ac + 1b + -1b + 1bc + 1c = -1 + -1b Combine like terms: 1b + -1b = 0 1a + 1ab + abc + 1ac + 0 + 1bc + 1c = -1 + -1b 1a + 1ab + abc + 1ac + 1bc + 1c = -1 + -1b Add '-1bc' to each side of the equation. 1a + 1ab + abc + 1ac + 1bc + -1bc + 1c = -1 + -1b + -1bc Combine like terms: 1bc + -1bc = 0 1a + 1ab + abc + 1ac + 0 + 1c = -1 + -1b + -1bc 1a + 1ab + abc + 1ac + 1c = -1 + -1b + -1bc Add '-1c' to each side of the equation. 1a + 1ab + abc + 1ac + 1c + -1c = -1 + -1b + -1bc + -1c Combine like terms: 1c + -1c = 0 1a + 1ab + abc + 1ac + 0 = -1 + -1b + -1bc + -1c 1a + 1ab + abc + 1ac = -1 + -1b + -1bc + -1c Reorder the terms: 1 + 1a + 1ab + abc + 1ac + b + bc + c = -1 + -1b + -1bc + -1c + 1 + b + bc + c Reorder the terms: 1 + 1a + 1ab + abc + 1ac + b + bc + c = -1 + 1 + -1b + b + -1bc + bc + -1c + c Combine like terms: -1 + 1 = 0 1 + 1a + 1ab + abc + 1ac + b + bc + c = 0 + -1b + b + -1bc + bc + -1c + c 1 + 1a + 1ab + abc + 1ac + b + bc + c = -1b + b + -1bc + bc + -1c + c Combine like terms: -1b + b = 0 1 + 1a + 1ab + abc + 1ac + b + bc + c = 0 + -1bc + bc + -1c + c 1 + 1a + 1ab + abc + 1ac + b + bc + c = -1bc + bc + -1c + c Combine like terms: -1bc + bc = 0 1 + 1a + 1ab + abc + 1ac + b + bc + c = 0 + -1c + c 1 + 1a + 1ab + abc + 1ac + b + bc + c = -1c + c Combine like terms: -1c + c = 0 1 + 1a + 1ab + abc + 1ac + b + bc + c = 0 The solution to this equation could not be determined.
| 2(x+3)+3x=3(x+4) | | 4x^3+2x-14=0 | | (m+7)=2m+14 | | -8.16-2.1t=5.9(t+4.8) | | 17z+33z=850 | | 0=x^4+18x^2-243 | | -4.9q=-24-1.9q | | 4+sqrt(4x^2+3x)=2x | | log(5)[3x+5]=2 | | log(10)[x-3]=1 | | 6(x+2)=2x-8 | | log(5)[3x+15]=2 | | -12x+8=3x-22 | | 3cosx+5sinx=2 | | 7x-13=10x+14 | | (5x-3)(6x+10)= | | -3x+15=-6x | | 4575-0.6x=3x-2525 | | a-b(x)=c-d(x) | | 3x=6x+3 | | 0.25(16x-28)=24 | | 3=(2x-3)-2(3x-2) | | 2(8x)+2(7x)=90 | | 2=(x+5)+3(4x-7) | | 2(7X)=90 | | -4x^2-(3x^2+8x-3)-(5x^2-3x+5)= | | -2=(5x-8) | | x*2-5x+6=0 | | -4=(3x+6) | | 3=(2x-5) | | -2.8x+7.76=-6.8 | | (3x^2-6x)+(5X^2-3X+10)= |