If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (a + -1)(2a + -3)(5a + -7) = f(a) Reorder the terms: (-1 + a)(2a + -3)(5a + -7) = f(a) Reorder the terms: (-1 + a)(-3 + 2a)(5a + -7) = f(a) Reorder the terms: (-1 + a)(-3 + 2a)(-7 + 5a) = f(a) Multiply (-1 + a) * (-3 + 2a) (-1(-3 + 2a) + a(-3 + 2a))(-7 + 5a) = f(a) ((-3 * -1 + 2a * -1) + a(-3 + 2a))(-7 + 5a) = f(a) ((3 + -2a) + a(-3 + 2a))(-7 + 5a) = f(a) (3 + -2a + (-3 * a + 2a * a))(-7 + 5a) = f(a) (3 + -2a + (-3a + 2a2))(-7 + 5a) = f(a) Combine like terms: -2a + -3a = -5a (3 + -5a + 2a2)(-7 + 5a) = f(a) Multiply (3 + -5a + 2a2) * (-7 + 5a) (3(-7 + 5a) + -5a * (-7 + 5a) + 2a2 * (-7 + 5a)) = f(a) ((-7 * 3 + 5a * 3) + -5a * (-7 + 5a) + 2a2 * (-7 + 5a)) = f(a) ((-21 + 15a) + -5a * (-7 + 5a) + 2a2 * (-7 + 5a)) = f(a) (-21 + 15a + (-7 * -5a + 5a * -5a) + 2a2 * (-7 + 5a)) = f(a) (-21 + 15a + (35a + -25a2) + 2a2 * (-7 + 5a)) = f(a) (-21 + 15a + 35a + -25a2 + (-7 * 2a2 + 5a * 2a2)) = f(a) (-21 + 15a + 35a + -25a2 + (-14a2 + 10a3)) = f(a) Combine like terms: 15a + 35a = 50a (-21 + 50a + -25a2 + -14a2 + 10a3) = f(a) Combine like terms: -25a2 + -14a2 = -39a2 (-21 + 50a + -39a2 + 10a3) = f(a) Multiply f * a -21 + 50a + -39a2 + 10a3 = af Solving -21 + 50a + -39a2 + 10a3 = af Solving for variable 'a'. Reorder the terms: -21 + 50a + -1af + -39a2 + 10a3 = af + -1af Combine like terms: af + -1af = 0 -21 + 50a + -1af + -39a2 + 10a3 = 0 The solution to this equation could not be determined.
| g^2-16g+30=0 | | 4ab-7ab= | | x^2-y^2=27 | | 6u-(-3u)+4+15= | | 10f^2+40jk-j-12k=0 | | 10/33n=-30/29 | | X^2+y^2=27 | | f(x)=-9x^2+2x+2 | | -5y=-x-5 | | 12x+9y=21 | | 8m^2-16m-13=-3 | | 2x+7=5x-21 | | 5+3(2s-7)-3(4s+6)-10= | | 0.06(X)=208 | | 0.6(X)=208 | | 5a-5=7a+2a | | 5x+9x-7x=7+7 | | z-12+44z=18-15z | | y=2.33x+30 | | 3-3(7-5b)= | | 6(1-6r)+5= | | h^2+14h-18=0 | | 7x+16=4(8x+4)-5x | | 5(6r-3)-3= | | -7(n-2)-4= | | 4-2p=6-4 | | 8b-2(b+1)= | | -6(-4a+4)-2= | | 8+7(1-2v)= | | xsqrt(3)+2x=12 | | 45x-33x+19=25x+17 | | 2.4*6.6= |