If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(a-6)(a-12)+(2a-5)(a-9)=a(2a-35)+157
We move all terms to the left:
(a-6)(a-12)+(2a-5)(a-9)-(a(2a-35)+157)=0
We multiply parentheses ..
(+a^2-12a-6a+72)+(2a-5)(a-9)-(a(2a-35)+157)=0
We calculate terms in parentheses: -(a(2a-35)+157), so:We get rid of parentheses
a(2a-35)+157
We multiply parentheses
2a^2-35a+157
Back to the equation:
-(2a^2-35a+157)
a^2-2a^2-12a-6a+(2a-5)(a-9)+35a+72-157=0
We multiply parentheses ..
a^2-2a^2+(+2a^2-18a-5a+45)-12a-6a+35a+72-157=0
We add all the numbers together, and all the variables
-1a^2+(+2a^2-18a-5a+45)+17a-85=0
We get rid of parentheses
-1a^2+2a^2-18a-5a+17a+45-85=0
We add all the numbers together, and all the variables
a^2-6a-40=0
a = 1; b = -6; c = -40;
Δ = b2-4ac
Δ = -62-4·1·(-40)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-14}{2*1}=\frac{-8}{2} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+14}{2*1}=\frac{20}{2} =10 $
| (−1/2)+a=5/8 | | −1/2+a=5/8 | | 12t+7-6t=25 | | h/90-4/6=4/6 | | h/90-4/6=4/5 | | 9+9=-2(4x-9) | | -13+58=-5(x+3) | | 4x-8+90=144 | | 175+(17x-3)=(17x+18 | | -13+58+-5(x=3) | | 3x+11=7x−13 | | 8y+5+2y+7=41 | | −2x−6−=17 | | n–5+ –16=–12 | | 8(1-2n)+5=-n-32 | | 12+7x-3=21 | | 3x-10+5=16 | | 5(4x+6)=-21+11 | | −7x+13=−71 | | 3.8+2b=3 | | (a/12)=5 | | |4x+5|=7 | | 1100+0.43x+2x=x | | 1100+0.43x+(10*2x)=x | | A*c*c=216 | | 1100+0.43x+(10*0.2x)=x | | (x-3/4)=(x/2) | | 1100+0.43x+10(05x)=x | | -18=(9-a/2) | | (n/4)-7=-2 | | 5x-13=x+17+10 | | 1100+0.43x+10(0.2x)=x |