(b+45)+(2b-9)+90+3/2b+b=540

Simple and best practice solution for (b+45)+(2b-9)+90+3/2b+b=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (b+45)+(2b-9)+90+3/2b+b=540 equation:



(b+45)+(2b-9)+90+3/2b+b=540
We move all terms to the left:
(b+45)+(2b-9)+90+3/2b+b-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(b+45)+(2b-9)+3/2b-450=0
We get rid of parentheses
b+b+2b+3/2b+45-9-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-9*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-18b-900b+3=0
We add all the numbers together, and all the variables
8b^2-828b+3=0
a = 8; b = -828; c = +3;
Δ = b2-4ac
Δ = -8282-4·8·3
Δ = 685488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{685488}=\sqrt{16*42843}=\sqrt{16}*\sqrt{42843}=4\sqrt{42843}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-828)-4\sqrt{42843}}{2*8}=\frac{828-4\sqrt{42843}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-828)+4\sqrt{42843}}{2*8}=\frac{828+4\sqrt{42843}}{16} $

See similar equations:

| b-4.38=-2.13 | | A-3+3a=13+a | | Y-16-3y=10 | | 54+78+x=180 | | 1/2x+1/4=1/3x+5/3 | | 4n+2=6((1/3n)-(2/3)) | | 4•1/5=3p | | n+6.2=-2.7 | | -8=x/7=16 | | 0.6(x+90)+x=118 | | y=-2y+4 | | 9h=119 | | 5v^2-13v-28=0 | | -5(-2a-1)-2=13 | | 3b=-8 | | 7x2=49x | | 915=5x^2 | | 9m/2=2/4 | | 2(u-6)=7u-7 | | 1/2=7/m | | 1/2(4x-20)=17 | | 2(4x-5)=-12+5x | | 5(x+3)-25=6(2x-x) | | 16^2z+62=64z | | −2+2(8x−7)=−16 | | .5s+1=7+4.5 | | 2x+3-15+12=37 | | |x+2|=3 | | 1|3(d+9)=-12 | | 5n+4=11n-7 | | -7(m-6)=7 | | -4(-4u+6)-5u=5(u-3)-7 |

Equations solver categories