(b+45)+(2b-90)+3/2b+b+90=540

Simple and best practice solution for (b+45)+(2b-90)+3/2b+b+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (b+45)+(2b-90)+3/2b+b+90=540 equation:



(b+45)+(2b-90)+3/2b+b+90=540
We move all terms to the left:
(b+45)+(2b-90)+3/2b+b+90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
b+(b+45)+(2b-90)+3/2b-450=0
We get rid of parentheses
b+b+2b+3/2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 3-(2-5x)=2x+4 | | 2c–3=7 | | 3-(2-5x)=2x+4) | | 6/x=1/6×+0 | | 3-(2-5x)=2/4x+2/8 | | -8-1.66666666666x=17 | | 2x+2x+5=x | | 151-y=201 | | 4(x+10)-3(x-5=2x | | 264-y=147 | | -2y+9=3(2y=9) | | c–3=7 | | v/6-1=5 | | 188=-w+283 | | 15a-75=-7-8 | | 1/4(24x+32)-13=2/3(18x-9) | | 6x-24=+6 | | 2x+(1-2)x=10 | | 4/5xX-8=32 | | 9.8=2(2.159)/t2 | | 350+25x=200+35x | | 2k=80-8k | | 6x-2+4x=10 | | 72X3=x | | 72•3=w | | 4/5x-8=32 | | 7b+4+4=-20 | | x-2-3=-22 | | 8(4+5b)-2=110 | | 7(6-p)=98 | | |x|=9x+29 | | |x^2+5x|=2x+10 |

Equations solver categories