If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(b+45)+90+(2b-90)+3/2b=540
We move all terms to the left:
(b+45)+90+(2b-90)+3/2b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
(b+45)+(2b-90)+3/2b-450=0
We get rid of parentheses
b+2b+3/2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
6b^2-990b+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $
| -3=-2x+17 | | 150m-125m+42,750=45,000-200m | | 3(2d+-8)=11d-18(d+-3) | | 121-4x=x | | U•u=25 | | 3x-21x^2=0 | | -67=-6x-1 | | 15×n=45×7 | | 1/2-14=3/4x+20 | | 2/3*5+1/4=a | | -24-1/8p=-24-1/8p=3/8p | | 6×-4=4x-3 | | q^2-((20*10^9)q)-(3*10^-6)=0 | | -4.5=x/8+8.3 | | 4(x-5)-5+6x=7.4-4x | | -7/6u=36 | | 2m+20=4m-32 | | -7-6x=2x-55 | | 2m+20=4m-40 | | -5+10(q+4)=-15 | | 12/9=n/3 | | 1.5x+1.3x=—8 | | -4b+2b=-6 | | 0.2p-1.2=1.2-1.2p | | 1/4x+1/2x-2=1/8x+3 | | 68l+125=229 | | -3c—12=5+c | | x^2+x^2-2x+10x=3x^2+12 | | x+2x+x+60=600 | | 8x+12+11x-16=180 | | 9+6x=-3x+9 | | 5x2+4=2(x+2) |