(d-10)+(d/3)d=21

Simple and best practice solution for (d-10)+(d/3)d=21 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (d-10)+(d/3)d=21 equation:



(d-10)+(d/3)d=21
We move all terms to the left:
(d-10)+(d/3)d-(21)=0
Domain of the equation: 3)d!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
(d-10)+(+d/3)d-21=0
We multiply parentheses
d^2+(d-10)-21=0
We get rid of parentheses
d^2+d-10-21=0
We add all the numbers together, and all the variables
d^2+d-31=0
a = 1; b = 1; c = -31;
Δ = b2-4ac
Δ = 12-4·1·(-31)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5\sqrt{5}}{2*1}=\frac{-1-5\sqrt{5}}{2} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5\sqrt{5}}{2*1}=\frac{-1+5\sqrt{5}}{2} $

See similar equations:

| -7z=-6.3z+7.28 | | 8-2x=-7+2/3x | | -6x-7=(-9+2x) | | -5/m=35 | | X2-4x+46=42 | | -2(x+4)=32 | | 16m-1m=-47 | | 17=10+(a/2 | | 45=12x-3x | | 15w-6w-9w+w=7 | | -4x=8-4x | | 5(x+2)=3(x-5)=6 | | -5(4x+1)+21x=15 | | 4x-4x+5x=15 | | -8=8+4v | | 13p+p+2p-12p-3p=17 | | -8.17-2.1c=-13.21-3.3c | | x+8/6=2x-3/10 | | -8.17−2.1c=-13.21−3.3c | | C+c-c+c=16 | | 8+x-6=-6+2x | | -12m=10-14m | | 5+2x-8=4+2x | | 58x+52=−78x−78 | | u-u+2u+3u-3u=8 | | -12m=10−14m | | 5+3x=-3+7x | | 2f-4+4f=10f+4 | | -1+5j=-19+4j | | 12+3p+1=-19+p | | 3/4y+1/16=11/16 | | 17r-3r-8r=6 |

Equations solver categories