If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(h-1)(3h-3)=2(h-2)(3h-3)-(h-2)(h-1)
We move all terms to the left:
(h-1)(3h-3)-(2(h-2)(3h-3)-(h-2)(h-1))=0
We multiply parentheses ..
(+3h^2-3h-3h+3)-(2(h-2)(3h-3)-(h-2)(h-1))=0
We calculate terms in parentheses: -(2(h-2)(3h-3)-(h-2)(h-1)), so:We get rid of parentheses
2(h-2)(3h-3)-(h-2)(h-1)
We multiply parentheses ..
2(+3h^2-3h-6h+6)-(h-2)(h-1)
We multiply parentheses
6h^2-6h-12h-(h-2)(h-1)+12
We multiply parentheses ..
6h^2-(+h^2-1h-2h+2)-6h-12h+12
We add all the numbers together, and all the variables
6h^2-(+h^2-1h-2h+2)-18h+12
We get rid of parentheses
6h^2-h^2+1h+2h-18h-2+12
We add all the numbers together, and all the variables
5h^2-15h+10
Back to the equation:
-(5h^2-15h+10)
3h^2-5h^2-3h-3h+15h+3-10=0
We add all the numbers together, and all the variables
-2h^2+9h-7=0
a = -2; b = 9; c = -7;
Δ = b2-4ac
Δ = 92-4·(-2)·(-7)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-5}{2*-2}=\frac{-14}{-4} =3+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+5}{2*-2}=\frac{-4}{-4} =1 $
| 890+y=530 | | -8+2k=10+10–2k | | 15-t=5t+3 | | 9(x-5)=8(x+5 | | 19-p=2p-9 | | 5(2s-5)=46 | | 8x+4=-2(x+1 | | 5u-3=4u | | 100+0.40x=60+0.80x | | 17x-x=16x | | 4x-(-18)=14 | | 12x2-3x=0 | | -7m=9+29-2m | | 3(5x+9)=-44+41 | | .50x+.45(50)=43.5 | | -7/9w=7/4 | | 4(3b+1)=26 | | 3t+3=2t | | g+8=-2g-10 | | 10b=19=4b-5 | | 9e−7=7e−11 | | (x+6)^2=-49 | | 3(2c+3)=30 | | |x+1|+6=2 | | −3k−22−8k=11 | | 0.25=(x^2/100) | | 8+7d=-d | | 10=-5x+(-30) | | 15(25−5a)=4−a | | 12+m=32 | | -3m=9-4m | | 10x+3+5x=33 |