(m+8)(m-9)=(m+1)

Simple and best practice solution for (m+8)(m-9)=(m+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (m+8)(m-9)=(m+1) equation:



(m+8)(m-9)=(m+1)
We move all terms to the left:
(m+8)(m-9)-((m+1))=0
We multiply parentheses ..
(+m^2-9m+8m-72)-((m+1))=0
We calculate terms in parentheses: -((m+1)), so:
(m+1)
We get rid of parentheses
m+1
Back to the equation:
-(m+1)
We get rid of parentheses
m^2-9m+8m-m-72-1=0
We add all the numbers together, and all the variables
m^2-2m-73=0
a = 1; b = -2; c = -73;
Δ = b2-4ac
Δ = -22-4·1·(-73)
Δ = 296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{296}=\sqrt{4*74}=\sqrt{4}*\sqrt{74}=2\sqrt{74}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{74}}{2*1}=\frac{2-2\sqrt{74}}{2} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{74}}{2*1}=\frac{2+2\sqrt{74}}{2} $

See similar equations:

| (m+8)(m-9=)(m+1) | | m2-2m=8 | | 3,8=-7+x-2,1 | | y2+y=12 | | 3,5+x-7=0,4 | | 2^x=2^4 | | 3,5+4x-2-x=2x+3,6-3 | | 3x-7=x | | (2x)6=8+x | | 5x-x+3=3x+8 | | 5x−x+3=3x+8 | | x+4,8-3=2x+1 | | 4×(y-1)=-12 | | 4−5x=1+6x4−5x=1+6x | | 5(x+10)/3=11 | | 0,3=-x3,8-5,4 | | x+4-7,2=1,8 | | 2n/3+5=n+2/4 | | 4x-3/5=5 | | (4x-12)=2-5x | | 5h+1/3=3h-1/5 | | -4×(y-1)=-12 | | 6x-11x=8x | | 64=8(r÷2) | | 59-x²+x=51 | | 3x+5=4x-11 | | 64800=x+(x*0.08) | | (5x+10)/3=11 | | 2x⁴-11x³+11x²-11x-9=0 | | n^2+n=136 | | 5x/7-3=1.5 | | 130-x=0.6x |

Equations solver categories