(n(200/n-20))-20=200

Simple and best practice solution for (n(200/n-20))-20=200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n(200/n-20))-20=200 equation:



(n(200/n-20))-20=200
We move all terms to the left:
(n(200/n-20))-20-(200)=0
Domain of the equation: n-20))!=0
n∈R
We add all the numbers together, and all the variables
(n(200/n-20))-220=0
We multiply all the terms by the denominator
(n(200-220*n-20))=0
We calculate terms in parentheses: +(n(200-220*n-20)), so:
n(200-220*n-20)
We add all the numbers together, and all the variables
n(-220n+180)
We multiply parentheses
-220n^2+180n
Back to the equation:
+(-220n^2+180n)
We get rid of parentheses
-220n^2+180n=0
a = -220; b = 180; c = 0;
Δ = b2-4ac
Δ = 1802-4·(-220)·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{32400}=180$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-180}{2*-220}=\frac{-360}{-440} =9/11 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+180}{2*-220}=\frac{0}{-440} =0 $

See similar equations:

| 9y-4.5=6y+2 | | 4x-14=2x=7 | | 12(2x-5)=(-7)(-10x+6) | | Y-4(.25y)=0 | | Y-2(3+.5y)=-6 | | 0=-3/2x+10 | | x+3x+12x+21x=50 | | n^2-14n+26=2 | | 15x+18+3x=180 | | 0=-3/2x=10 | | 5(x+10)=3(x-4) | | 4(2x+15)=3(x+20) | | 9x-21=7x | | 3(4x-32)=4(x+16) | | 3(4-32)=4(x+16) | | 8(x-6)=5(x+6) | | 5x=-48+4(4x+1) | | 4/x+7=0 | | 2x+3(-2x-2)=-26 | | 3x+8=2.5(x+8) | | -(7y/2)=-49 | | 2(x+6)+2(x+2)=2(2x-2)+2(x+4) | | 2x+3(4x-5)=-57 | | 16/3=-8v | | (-7/4)w=-14 | | 4-3d=3-8 | | -(7/4)w=-14 | | -7/4w=-14 | | -3-3x=-6-6x | | -20=(4/7)w | | -3x/5=21 | | -5-4x=-1-3x |

Equations solver categories