If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(n)(n+2)=130
We move all terms to the left:
(n)(n+2)-(130)=0
We multiply parentheses
n^2+2n-130=0
a = 1; b = 2; c = -130;
Δ = b2-4ac
Δ = 22-4·1·(-130)
Δ = 524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{524}=\sqrt{4*131}=\sqrt{4}*\sqrt{131}=2\sqrt{131}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{131}}{2*1}=\frac{-2-2\sqrt{131}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{131}}{2*1}=\frac{-2+2\sqrt{131}}{2} $
| 3x+4(x+1)=-10 | | 16y^2=-1 | | 0=65+2x-3x^2 | | -1-3a-9/4=2a-5/6 | | 2x+1x+1x+0,3x=100 | | (5x+12)+(4x-3)=90 | | 39=x/4+11 | | 3m/3+2=17/3 | | 37=u/5+10 | | x+3x-35=22 | | a-a-a=5 | | x+3x-5=-22 | | x+3x-5=22 | | 5^(2x+3)=12*6^(4x) | | 2x+13=x+10 | | (x+6)=30 | | m+2m-4÷7=m÷5-3÷7 | | 10y^2=0 | | (2a-4)+2(a-5)-3(a+1)= | | 3y²+12y-6=0 | | 6m³-4m=2m/6 | | 10Xy/30=1/3(y) | | 2/3(27x+15)-1=-1/4(16x-20) | | 1/4x-1/5x=20 | | 7/x-4=48 | | 90=6x+13 | | 90=(6x+13) | | 90=(6x)(x+13) | | _2b=1 | | 3x+15+x+10=90 | | 3x-15+x+10+2x-5=180 | | X-9x5=38 |