(n)2+(n+1)2=113

Simple and best practice solution for (n)2+(n+1)2=113 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n)2+(n+1)2=113 equation:



(n)2+(n+1)2=113
We move all terms to the left:
(n)2+(n+1)2-(113)=0
We add all the numbers together, and all the variables
n^2+(n+1)2-113=0
We multiply parentheses
n^2+2n+2-113=0
We add all the numbers together, and all the variables
n^2+2n-111=0
a = 1; b = 2; c = -111;
Δ = b2-4ac
Δ = 22-4·1·(-111)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8\sqrt{7}}{2*1}=\frac{-2-8\sqrt{7}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8\sqrt{7}}{2*1}=\frac{-2+8\sqrt{7}}{2} $

See similar equations:

| -5x+8+6x=10-13 | | -5x=8=6x=10-31 | | 6x-15+4x+11=180 | | 2(x=40+1/2)+3=84 | | 2(42+-1.5Y)+3y=84 | | 28=9v-8+5v | | 2/3n=6/7 | | 8+4(4x-4)=8-5(2x+1) | | 10=2(y+2) | | 1/3(2x+3)1/5(x+6)=4 | | 3p+56=180 | | x-(3x-3)=1 | | 4x-7x+74=5x+34 | | p+56=p | | y+(5y+3)=15 | | p=p+56 | | -(3y-5)-(2y-5)=10-(3y-4) | | 535x+934=−6 | | 4(x+5)-(4x-3)=3(3x+2)-28 | | 2x^2-2x-x=0 | | -5(-4x+6)-9x=5(x-8)-6 | | u+2/5=4/1/4 | | m-2m(2)=m(2-2m)-4 | | 1/2n=4/5 | | 69+180-4x+x=180 | | 730x+4380x^2=0 | | (x+2)^2-3=1 | | 3/4n=1/8 | | 2(42-1.5y)+3y=84 | | 0=-4/7x+12 | | 1/6+b=1/3 | | f+4/1=−2/7​ |

Equations solver categories