If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(n)=-6-+(n-1)(1/5)
We move all terms to the left:
(n)-(-6-+(n-1)(1/5))=0
We add all the numbers together, and all the variables
n-(-6-+(n-1)(+1/5))=0
We use the square of the difference formula
n-(-6-(n-1)(+1/5))=0
We multiply parentheses ..
-(-6-(+n^2-1*1/5))+n=0
We multiply all the terms by the denominator
-(-6-(+n^2-1*1+n*5))=0
We calculate terms in parentheses: -(-6-(+n^2-1*1+n*5)), so:We get rid of parentheses
-6-(+n^2-1*1+n*5)
determiningTheFunctionDomain -(+n^2-1*1+n*5)-6
We get rid of parentheses
-n^2-n*5-6+1*1
We add all the numbers together, and all the variables
-1n^2-n*5-5
Wy multiply elements
-1n^2-5n-5
Back to the equation:
-(-1n^2-5n-5)
1n^2+5n+5=0
We add all the numbers together, and all the variables
n^2+5n+5=0
a = 1; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·1·5
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{5}}{2*1}=\frac{-5-\sqrt{5}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{5}}{2*1}=\frac{-5+\sqrt{5}}{2} $
| 2(4w+2)=6(w+8) | | 8x+12=25 | | 21+28x=29+26x | | −4+3(x−1)=2(x+2)−x | | 5,1-x=8x+1,7 | | 3x+3=234 | | 48+x=359 | | 10x-15(5x+10)=10x+5 | | 10x-15(5x+10)=10x+10 | | 49x+2=51x-2 | | 12x−4=5x−28. | | 16x+2=15x+5 | | 9(x+6)=6(x-3) | | 2x=28−2x | | 39=3(u-3)+5u | | 4(3x)=52 | | 5f+4=2f+22 | | 3(x+5)=4(x-1) | | -1-4x=8 | | 3(3n+2)=6(n+10) | | 5x²+3x+1=0 | | z+22=64z+22–22=64–22z=42 | | 2=3-2x | | 2(x+5)@=3(x-1) | | x+-6=-3x= | | 1/3x1/3x/1/3=1/9 | | 205=10(x-65)+55 | | x/0.6=809 | | -x+(-11)=-2 | | 4-(4x+3)=13-6x | | 6-(3x+3)=15-5x | | 4x3-3x-2=0 |