(n+0.1)2+(2n)2=(n+0,6)2+n2

Simple and best practice solution for (n+0.1)2+(2n)2=(n+0,6)2+n2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n+0.1)2+(2n)2=(n+0,6)2+n2 equation:



(n+0.1)2+(2n)2=(n+0.6)2+n2
We move all terms to the left:
(n+0.1)2+(2n)2-((n+0.6)2+n2)=0
We add all the numbers together, and all the variables
2n^2+(n+0.1)2-((n+0.6)2+n2)=0
We multiply parentheses
2n^2+2n-((n+0.6)2+n2)+0.2=0
We calculate terms in parentheses: -((n+0.6)2+n2), so:
(n+0.6)2+n2
We add all the numbers together, and all the variables
n^2+(n+0.6)2
We multiply parentheses
n^2+2n+1.2
Back to the equation:
-(n^2+2n+1.2)
We get rid of parentheses
2n^2-n^2+2n-2n-1.2+0.2=0
We add all the numbers together, and all the variables
n^2-1=0
a = 1; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·1·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2}{2*1}=\frac{-2}{2} =-1 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2}{2*1}=\frac{2}{2} =1 $

See similar equations:

| -(6-n)-8=-(1+n) | | 0.99x=0.10+10 | | -16/z=4 | | 5r-7.5=-22.5 | | k+6=12 | | -10/6x=6 | | Y=x4+3x2-5 | | 112=56+5/4x | | u+3=6 | | x-0.3x=24000 | | Y=8+6x+x2 | | X+-13=40,x | | 60y=18 | | -x+14=14 | | 27=3c−3(6−2c | | (5x+24)=9x-17 | | 5v-4/3=-2/3v-6/5 | | 0.35x+0.15(100-x)=19 | | 8y+3y=44. | | n(-6)=-2(-6)-21 | | 2x^2+14=112 | | −14u+32=−6−14u+32=−6. | | −14u+32=−6−14u+32=−6 | | Y=7-0.7x | | 18(5−3w)= | | 15-1/2x=19 | | 42=8-8-(t-20 | | -2d-15d+16d=-15 | | 3*m-5=2*m | | 9–6f=-5f | | 9a-45+2a-2=19 | | 9x-4/5=8x+2/10 |

Equations solver categories