(n+7)(n+2)-n(n+5)=66

Simple and best practice solution for (n+7)(n+2)-n(n+5)=66 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n+7)(n+2)-n(n+5)=66 equation:


Simplifying
(n + 7)(n + 2) + -1n(n + 5) = 66

Reorder the terms:
(7 + n)(n + 2) + -1n(n + 5) = 66

Reorder the terms:
(7 + n)(2 + n) + -1n(n + 5) = 66

Multiply (7 + n) * (2 + n)
(7(2 + n) + n(2 + n)) + -1n(n + 5) = 66
((2 * 7 + n * 7) + n(2 + n)) + -1n(n + 5) = 66
((14 + 7n) + n(2 + n)) + -1n(n + 5) = 66
(14 + 7n + (2 * n + n * n)) + -1n(n + 5) = 66
(14 + 7n + (2n + n2)) + -1n(n + 5) = 66

Combine like terms: 7n + 2n = 9n
(14 + 9n + n2) + -1n(n + 5) = 66

Reorder the terms:
14 + 9n + n2 + -1n(5 + n) = 66
14 + 9n + n2 + (5 * -1n + n * -1n) = 66
14 + 9n + n2 + (-5n + -1n2) = 66

Reorder the terms:
14 + 9n + -5n + n2 + -1n2 = 66

Combine like terms: 9n + -5n = 4n
14 + 4n + n2 + -1n2 = 66

Combine like terms: n2 + -1n2 = 0
14 + 4n + 0 = 66
14 + 4n = 66

Solving
14 + 4n = 66

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-14' to each side of the equation.
14 + -14 + 4n = 66 + -14

Combine like terms: 14 + -14 = 0
0 + 4n = 66 + -14
4n = 66 + -14

Combine like terms: 66 + -14 = 52
4n = 52

Divide each side by '4'.
n = 13

Simplifying
n = 13

See similar equations:

| g(x)=1.5x+7 | | 3x+8=-9x-10x | | y-1=2(x-3) | | x-8+3=15 | | -6x+6=-7 | | -5xy+7x*(3y-2x)+4x*3x= | | s+2s+s+26=74 | | -4=7u-13 | | s+s+s+26=74 | | 10-4(p+7)=2(p-p) | | (x-1)(2x+5)(3x-1)=0 | | 6x+16=8x+3 | | 2w+4+2w=40 | | 10x-11=8x | | 10+4x=3(x-6) | | 14n-8=(4n-5) | | -4+6-7=9 | | 2z+4=z-1 | | f(y)=y^2-9y | | 4x^2+12x+6= | | 25y+15x= | | 4c+18d= | | 35-14m= | | 4y+2=-4 | | 9a+21b= | | 8x-4y= | | -8a-24b= | | 6x+14=9x+30 | | 5m+15n= | | 5x-2=4x-6+4 | | 5x-2=4x-6x+4 | | 6x+10=-4-20 |

Equations solver categories