(n-1)(n+6)=(n+5)

Simple and best practice solution for (n-1)(n+6)=(n+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n-1)(n+6)=(n+5) equation:



(n-1)(n+6)=(n+5)
We move all terms to the left:
(n-1)(n+6)-((n+5))=0
We multiply parentheses ..
(+n^2+6n-1n-6)-((n+5))=0
We calculate terms in parentheses: -((n+5)), so:
(n+5)
We get rid of parentheses
n+5
Back to the equation:
-(n+5)
We get rid of parentheses
n^2+6n-1n-n-6-5=0
We add all the numbers together, and all the variables
n^2+4n-11=0
a = 1; b = 4; c = -11;
Δ = b2-4ac
Δ = 42-4·1·(-11)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{15}}{2*1}=\frac{-4-2\sqrt{15}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{15}}{2*1}=\frac{-4+2\sqrt{15}}{2} $

See similar equations:

| s(13s+4)=9 | | 4x+3^2=18 | | 7h-13=-55 | | 2x+-4=2x-6 | | -5i+13=28 | | 8x=180-x | | 2(2x+1)=2x+8= | | 6c+54=66 | | (2x-6)=(90-x) | | -2g-14=-32 | | f/3-22=-26 | | 16x^2-57x+46=0 | | Y=8.3x-43 | | -6s+19=-11 | | 3/4x+5=1/3x-3 | | g/3+16=28 | | 2.50+0.15x=1.00+20x | | (5x+6)=2(7x-10) | | 3(x-3)+4x=68 | | 2.50+0.15x=1.000.20x | | (5x+6)=(7x-10)*2 | | (7x-10)=2(5x+6) | | 4.50+6x=17.50+4x | | 6x+4+38=90 | | 9s+15s=180 | | 0.75x+4=0.50x+8 | | 40+4y-16=13y=12=3y | | 5(2k+3)=27 | | -3x-8+x=4x+x-10 | | 8(x-1)=-2(x-19) | | Y=11.6x-25 | | 10/8=2z/4 |

Equations solver categories