(n-3)(n-1)(n+1)=0

Simple and best practice solution for (n-3)(n-1)(n+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n-3)(n-1)(n+1)=0 equation:


Simplifying
(n + -3)(n + -1)(n + 1) = 0

Reorder the terms:
(-3 + n)(n + -1)(n + 1) = 0

Reorder the terms:
(-3 + n)(-1 + n)(n + 1) = 0

Reorder the terms:
(-3 + n)(-1 + n)(1 + n) = 0

Multiply (-3 + n) * (-1 + n)
(-3(-1 + n) + n(-1 + n))(1 + n) = 0
((-1 * -3 + n * -3) + n(-1 + n))(1 + n) = 0
((3 + -3n) + n(-1 + n))(1 + n) = 0
(3 + -3n + (-1 * n + n * n))(1 + n) = 0
(3 + -3n + (-1n + n2))(1 + n) = 0

Combine like terms: -3n + -1n = -4n
(3 + -4n + n2)(1 + n) = 0

Multiply (3 + -4n + n2) * (1 + n)
(3(1 + n) + -4n * (1 + n) + n2(1 + n)) = 0
((1 * 3 + n * 3) + -4n * (1 + n) + n2(1 + n)) = 0
((3 + 3n) + -4n * (1 + n) + n2(1 + n)) = 0
(3 + 3n + (1 * -4n + n * -4n) + n2(1 + n)) = 0
(3 + 3n + (-4n + -4n2) + n2(1 + n)) = 0
(3 + 3n + -4n + -4n2 + (1 * n2 + n * n2)) = 0
(3 + 3n + -4n + -4n2 + (1n2 + n3)) = 0

Combine like terms: 3n + -4n = -1n
(3 + -1n + -4n2 + 1n2 + n3) = 0

Combine like terms: -4n2 + 1n2 = -3n2
(3 + -1n + -3n2 + n3) = 0

Solving
3 + -1n + -3n2 + n3 = 0

Solving for variable 'n'.

The solution to this equation could not be determined.

See similar equations:

| 9x-3+6x=6x+4-8x | | 8x+15=7x+6 | | 0x+3=10-8x | | (x+7)(x-2)=(2x+6)(x-2) | | -4(5t-2)+8t=3t-5 | | 1/3n=3 | | 16(x-4)+54=-9+13x | | 81s^2+144s+64= | | 5x+12=24+x | | -5(7x-2)+7=-35x+17 | | -2(x+7)-8=-5x+(-19) | | n-(-4)=-17 | | 9.42h=66 | | 11x+7=5x+2 | | (cosx)^2=1/9 | | -v^2=49-14v | | 4X^2-8X+16=289 | | (4y+3)(y+3)=-5(4y+3) | | 2y-5=15y+34 | | 3p-7=0 | | 4X^2-8X-273=0 | | 2x-15=-51 | | -8+n=14 | | 4X^2-12X+9-225=0 | | (s-5/9)^2 | | 3s^2=22s+16 | | t^2+10t+24= | | (9v+4)(5v-3)=0 | | 9i/7-4i | | x+-5=19 | | ((9a-5b)/2a)-((6a-7b)/2a) | | 22500/150= |

Equations solver categories