(q+2)(3q-2)=180

Simple and best practice solution for (q+2)(3q-2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (q+2)(3q-2)=180 equation:



(q+2)(3q-2)=180
We move all terms to the left:
(q+2)(3q-2)-(180)=0
We multiply parentheses ..
(+3q^2-2q+6q-4)-180=0
We get rid of parentheses
3q^2-2q+6q-4-180=0
We add all the numbers together, and all the variables
3q^2+4q-184=0
a = 3; b = 4; c = -184;
Δ = b2-4ac
Δ = 42-4·3·(-184)
Δ = 2224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2224}=\sqrt{16*139}=\sqrt{16}*\sqrt{139}=4\sqrt{139}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{139}}{2*3}=\frac{-4-4\sqrt{139}}{6} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{139}}{2*3}=\frac{-4+4\sqrt{139}}{6} $

See similar equations:

| 3(2x+3)−5=16 | | 7x+14=(+) | | 3x=-14.4 | | -5=x=9.8 | | 2x+3=51100 | | -4x=-19.2 | | d/1.2(d/1.2)=6 | | (-2+5i)-(-14-4i)=-16+i | | x=-4.8 | | 3(x-2)+2x=5(x+7)-41 | | 8y-2y=132y | | 12x-15=8x-15 | | 9w-3-8w=8 | | 3^x+4=40 | | -40=-120+r | | 3p*2p=6p^2 | | r+3r=32r | | 15=|15-3a| | | 7q=371 | | 104=26u | | 15k+13k=45k | | t-4+2t+7=90 | | 8q=368 | | ?x1.6=0.256 | | 486=6k | | 4s=956 | | 70w-50=6w | | (x+12)(x+10)=0 | | 29m=493 | | 90=5z | | 14m+6=90m | | 4x-6+x+3=(x=8) |

Equations solver categories