If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(q-3)(q+3)=0
We use the square of the difference formula
q^2-9=0
a = 1; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·1·(-9)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6}{2*1}=\frac{-6}{2} =-3 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6}{2*1}=\frac{6}{2} =3 $
| 4x-(x+2)=13 | | 7a+4a=-35 | | 8c-20=28 | | 5/3x+1/3x=32/3+8/3x | | 56x-9=7x-72 | | X+4/2=y-4/3 | | -38=-2(43d—24) | | -9=3(x-5) | | 4x/5+3=11 | | 17+y=-8 | | -2/3e+3/7=1/2 | | (7-6i)(6+7i)=0 | | -3+x=23 | | 2x-61=x+21 | | 19-3g=7 | | 8i(5-5i)=0 | | (x^2+x-18)^2=0 | | 9h-9h+h-h+h=15 | | 2+y=-26 | | -3+k=-10 | | 3(-3+2n)+2=-3n+38 | | -6y+12+2y=28 | | 7+2c=13 | | 4(1-x)=6x-3 | | -4y=96 | | 25x-100=600 | | (2^3)-(4(5-3)^3)=8x | | 8(1-7x)=8x+8 | | 16w-13w+2w-w=16 | | 2c+3-4=-4c-4 | | n÷-3.88=-2000 | | 6z+2=2z+26 |