(q/2)+25=(100/q)+20

Simple and best practice solution for (q/2)+25=(100/q)+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (q/2)+25=(100/q)+20 equation:



(q/2)+25=(100/q)+20
We move all terms to the left:
(q/2)+25-((100/q)+20)=0
Domain of the equation: q)+20)!=0
q!=0/1
q!=0
q∈R
We add all the numbers together, and all the variables
(+q/2)-((+100/q)+20)+25=0
We get rid of parentheses
q/2-((+100/q)+20)+25=0
We calculate fractions
q^2/2q+()/2q+25=0
We multiply all the terms by the denominator
q^2+25*2q+()=0
We add all the numbers together, and all the variables
q^2+25*2q=0
Wy multiply elements
q^2+50q=0
a = 1; b = 50; c = 0;
Δ = b2-4ac
Δ = 502-4·1·0
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-50}{2*1}=\frac{-100}{2} =-50 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+50}{2*1}=\frac{0}{2} =0 $

See similar equations:

| 3(5+x)-9=2(x-7)+x | | 458=44(5)+230x | | 1200=x^2+150x | | 20=3x+22 | | 458=44(5)+230=x | | -3|4a-2|=12 | | y+13+y=y+49 | | 5v/2=-15 | | x+3+x+3=x+44 | | x-33+x-50=x+31 | | 15(x+6.20)=107.27 | | x–33+x–50=x+31 | | u-19+u=u+35 | | y-44+y-38=y+32 | | 150x-x^2=1200 | | v-5+v-20=v+28 | | v-41+v-30=v | | v+v-5=v+30 | | v+v-5=v-0 | | 9x-5x+18=2x+44 | | t+t-6=t+36 | | 50x+5.50x=18.50x+7.75 | | 150x-x^2=12000 | | 200x-x^2=9900 | | 2(x+5)-12=2x-2 | | 2/3m+7=9 | | 200x=9600+x2 | | x(200−x)=9600 | | 40+30+x=100 | | 3x=10=19 | | 150x=1200+x2 | | 17+w=-3 |

Equations solver categories