If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (r + -3s + t)(2r + -1s + t) = 0 Multiply (r + -3s + t) * (2r + -1s + t) (r(2r + -1s + t) + -3s * (2r + -1s + t) + t(2r + -1s + t)) = 0 ((2r * r + -1s * r + t * r) + -3s * (2r + -1s + t) + t(2r + -1s + t)) = 0 Reorder the terms: ((-1rs + rt + 2r2) + -3s * (2r + -1s + t) + t(2r + -1s + t)) = 0 ((-1rs + rt + 2r2) + -3s * (2r + -1s + t) + t(2r + -1s + t)) = 0 (-1rs + rt + 2r2 + (2r * -3s + -1s * -3s + t * -3s) + t(2r + -1s + t)) = 0 Reorder the terms: (-1rs + rt + 2r2 + (-6rs + -3st + 3s2) + t(2r + -1s + t)) = 0 (-1rs + rt + 2r2 + (-6rs + -3st + 3s2) + t(2r + -1s + t)) = 0 (-1rs + rt + 2r2 + -6rs + -3st + 3s2 + (2r * t + -1s * t + t * t)) = 0 (-1rs + rt + 2r2 + -6rs + -3st + 3s2 + (2rt + -1st + t2)) = 0 Reorder the terms: (-1rs + -6rs + rt + 2rt + 2r2 + -3st + -1st + 3s2 + t2) = 0 Combine like terms: -1rs + -6rs = -7rs (-7rs + rt + 2rt + 2r2 + -3st + -1st + 3s2 + t2) = 0 Combine like terms: rt + 2rt = 3rt (-7rs + 3rt + 2r2 + -3st + -1st + 3s2 + t2) = 0 Combine like terms: -3st + -1st = -4st (-7rs + 3rt + 2r2 + -4st + 3s2 + t2) = 0 Solving -7rs + 3rt + 2r2 + -4st + 3s2 + t2 = 0 Solving for variable 'r'. The solution to this equation could not be determined.
| 6y=4-1.69 | | 24=3(n+15) | | 3x+2=-3+20 | | 2(4y-5x)=6y-20 | | 9=4c-11 | | 18372747267284717839274728726472+98377778777777293771898472984727384774918999999999999999917373892946584456673485753756427426427538673=1 | | 2[4+2(5-x)-2x]=4(7+2x) | | -7x-2+x=-62 | | =(2x^3-7x^2+7x)+(2x^3+9x^2-14x) | | 5(2n+5)=6(8n+6)+5 | | 8x-3-3x=5x | | 35=8x-53 | | 2x+22=4x+4 | | (3x+5)+(2x-7)+x=180 | | 123456789+123456789=1 | | -7(n+4)+29=-4n-5 | | 49x^2+70x-11=0 | | (x+2)(12x^3-3x^2+x+1)=0 | | 19-34=-5x | | y^2+3y=54 | | 9999999999+9999999999=99999999999999999999 | | -15+x=x-17 | | (2x+1)(4x^2-2x+1)=0 | | 2x+3x+x+4x=180 | | 3y+30=6y+15 | | 5x^2+16x+7=y | | (2x-1)(3x^2-4x+5)=0 | | 1-6x=-7x-6 | | (2x+12)(x-2)= | | 2(-4y-6)=-4[4y+4(y-1)] | | 10+3n=42 | | 1000=200+50(t-20) |