If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(s-6)(s-3)+(2s-7)(s+12)=s(2s-1)-44
We move all terms to the left:
(s-6)(s-3)+(2s-7)(s+12)-(s(2s-1)-44)=0
We multiply parentheses ..
(+s^2-3s-6s+18)+(2s-7)(s+12)-(s(2s-1)-44)=0
We calculate terms in parentheses: -(s(2s-1)-44), so:We get rid of parentheses
s(2s-1)-44
We multiply parentheses
2s^2-1s-44
Back to the equation:
-(2s^2-1s-44)
s^2-2s^2-3s-6s+(2s-7)(s+12)+1s+18+44=0
We multiply parentheses ..
s^2-2s^2+(+2s^2+24s-7s-84)-3s-6s+1s+18+44=0
We add all the numbers together, and all the variables
-1s^2+(+2s^2+24s-7s-84)-8s+62=0
We get rid of parentheses
-1s^2+2s^2+24s-7s-8s-84+62=0
We add all the numbers together, and all the variables
s^2+9s-22=0
a = 1; b = 9; c = -22;
Δ = b2-4ac
Δ = 92-4·1·(-22)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-13}{2*1}=\frac{-22}{2} =-11 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+13}{2*1}=\frac{4}{2} =2 $
| 9x+3(x-1)=7(2+x)-4 | | 3x-3+2=4(2x-1) | | 8b+10-9b=5(b-10( | | 1=u/2-3 | | 3×-14=25x= | | 1+6x-3x=13 | | 8(7x+6)=160 | | 8(-2x-4)+12=-52 | | -2y-8=-5y-16 | | -2(5+6x)+16=-90 | | z−6z+3.9=−5.5(z−4.8) | | 444444x-6666666=1010100000000 | | 4x-(x-4)=-20 | | 4(26-s)-3s=36 | | 2(b-16)=6 | | 1/2x+16=3x-12 | | 2.7x5.1= | | 7d=2(d+5) | | 4x-1=-1x | | -4x-2=4x-4 | | k^2+(k+7)^2=13^2 | | 1x+9x=100 | | -2x+3=-x+12−x+12 | | /Y+6x=11.x=-2,0,4 | | -2x+3=−2x+3=-x+12−x+12 | | 14+26=5(7x-8) | | 7x-3(4x+8)=11 | | -3.7n-2.7-4.5n=-2.34-8n | | 8⋅n=5⋅8 | | (-2x)=30 | | (3x+8)+(4x+10)=144 | | 35=1.5u |