If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(u+2)(3u-1)+1=(6-u)(u+1)
We move all terms to the left:
(u+2)(3u-1)+1-((6-u)(u+1))=0
We add all the numbers together, and all the variables
(u+2)(3u-1)-((-1u+6)(u+1))+1=0
We multiply parentheses ..
(+3u^2-1u+6u-2)-((-1u+6)(u+1))+1=0
We calculate terms in parentheses: -((-1u+6)(u+1)), so:We get rid of parentheses
(-1u+6)(u+1)
We multiply parentheses ..
(-1u^2-1u+6u+6)
We get rid of parentheses
-1u^2-1u+6u+6
We add all the numbers together, and all the variables
-1u^2+5u+6
Back to the equation:
-(-1u^2+5u+6)
3u^2+1u^2-1u+6u-5u-2-6+1=0
We add all the numbers together, and all the variables
4u^2-7=0
a = 4; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·4·(-7)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*4}=\frac{0-4\sqrt{7}}{8} =-\frac{4\sqrt{7}}{8} =-\frac{\sqrt{7}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*4}=\frac{0+4\sqrt{7}}{8} =\frac{4\sqrt{7}}{8} =\frac{\sqrt{7}}{2} $
| 130=26y | | t/2=10=14 | | (5*x)3=21 | | 6=x/3=1 | | 215=164-w | | 3x-7=4-7x | | v/5-1.4=-13.9 | | (x+3)+2=12 | | -v+162=1 | | 4r−9+−2r = 39 | | 67=h+30 | | X2=60-7x | | -8.3=4.5=x/8 | | 14a=6 | | 8.7=u/4-2.3 | | 0,25x+24453=x | | 101-x=193 | | 93-y=169 | | 8x-3x=12-17 | | 4x+5=5. | | 41=-7z-3 | | 4.1x=15.17. | | 2(2x-1)=(x+1)+3(x-1 | | 11=p/5 | | 6(1.5d)=3(3D) | | 8x=-1+8x | | (52/45)=(17/5)^x | | c=26+1.4/2 | | 11x=146.3 | | 2p+8=30 | | 2x+1x3=4x+8 | | 11x+x+20=180 |