(u+2)/(3u-1)+1=(6-u)/(u+1)

Simple and best practice solution for (u+2)/(3u-1)+1=(6-u)/(u+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (u+2)/(3u-1)+1=(6-u)/(u+1) equation:


D( u )

u+1 = 0

3*u-1 = 0

u+1 = 0

u+1 = 0

u+1 = 0 // - 1

u = -1

3*u-1 = 0

3*u-1 = 0

3*u-1 = 0 // + 1

3*u = 1 // : 3

u = 1/3

u in (-oo:-1) U (-1:1/3) U (1/3:+oo)

(u+2)/(3*u-1)+1 = (6-u)/(u+1) // - (6-u)/(u+1)

(u+2)/(3*u-1)-((6-u)/(u+1))+1 = 0

(u+2)/(3*u-1)+(-1*(6-u))/(u+1)+1 = 0

((u+2)*(u+1))/((3*u-1)*(u+1))+(-1*(6-u)*(3*u-1))/((3*u-1)*(u+1))+(1*(3*u-1)*(u+1))/((3*u-1)*(u+1)) = 0

(u+2)*(u+1)-1*(6-u)*(3*u-1)+1*(3*u-1)*(u+1) = 0

4*u^2+3*u^2-16*u+2*u-1+8 = 0

7*u^2-14*u+7 = 0

7*u^2-14*u+7 = 0

7*(u^2-2*u+1) = 0

u^2-2*u+1 = 0

DELTA = (-2)^2-(1*1*4)

DELTA = 0

u = 2/(1*2)

u = 1 or u = 1

7*(u-1)^2 = 0

(7*(u-1)^2)/((3*u-1)*(u+1)) = 0

(7*(u-1)^2)/((3*u-1)*(u+1)) = 0 // * (3*u-1)*(u+1)

7*(u-1)^2 = 0

u-1 = 0 // + 1

u = 1

u in { 1, 1 }

See similar equations:

| F+2=4 | | 8x+2(5x-6)=5(4x-9)+13 | | 8+x/-10=-2 | | 1/3*x-3/4*x=(1/12) | | 3a+(2a-5)+2(9+2)=13 | | 12x+3x+4x=56 | | 7.9=2n+1.9 | | -2=n-n | | 4a^4/7t^4*49t^7/16a | | x+x+6=8 | | x+52+65+72=180 | | 70+70+x+40=180 | | x^3-9x^2-9x+81=0 | | 2-(5m-4)+9(m-1)= | | 6+2(5x+9)=9x-13 | | -4.5t+2.5=2.3 | | 4.185/0.93 | | X/-4-8=-12 | | X/-4-8=12 | | 33=3x+33 | | -5(1-5x)+(-8x-24)=-4x-8x | | 3(x-4)+6=2 | | 4m-4=4m+6 | | 20+3(x-4)=38 | | d/3+10=17 | | 230.00+.15m=326.00 | | 12x+12=-24 | | -5a+5=-5a+5 | | (t^6)+(2)(t^3)=24 | | 4.5=-3+x | | (8x+2)(7-6x)=a | | -2/3h=-23 |

Equations solver categories