(v-5)(v-8)(v+6)=0

Simple and best practice solution for (v-5)(v-8)(v+6)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (v-5)(v-8)(v+6)=0 equation:


Simplifying
(v + -5)(v + -8)(v + 6) = 0

Reorder the terms:
(-5 + v)(v + -8)(v + 6) = 0

Reorder the terms:
(-5 + v)(-8 + v)(v + 6) = 0

Reorder the terms:
(-5 + v)(-8 + v)(6 + v) = 0

Multiply (-5 + v) * (-8 + v)
(-5(-8 + v) + v(-8 + v))(6 + v) = 0
((-8 * -5 + v * -5) + v(-8 + v))(6 + v) = 0
((40 + -5v) + v(-8 + v))(6 + v) = 0
(40 + -5v + (-8 * v + v * v))(6 + v) = 0
(40 + -5v + (-8v + v2))(6 + v) = 0

Combine like terms: -5v + -8v = -13v
(40 + -13v + v2)(6 + v) = 0

Multiply (40 + -13v + v2) * (6 + v)
(40(6 + v) + -13v * (6 + v) + v2(6 + v)) = 0
((6 * 40 + v * 40) + -13v * (6 + v) + v2(6 + v)) = 0
((240 + 40v) + -13v * (6 + v) + v2(6 + v)) = 0
(240 + 40v + (6 * -13v + v * -13v) + v2(6 + v)) = 0
(240 + 40v + (-78v + -13v2) + v2(6 + v)) = 0
(240 + 40v + -78v + -13v2 + (6 * v2 + v * v2)) = 0
(240 + 40v + -78v + -13v2 + (6v2 + v3)) = 0

Combine like terms: 40v + -78v = -38v
(240 + -38v + -13v2 + 6v2 + v3) = 0

Combine like terms: -13v2 + 6v2 = -7v2
(240 + -38v + -7v2 + v3) = 0

Solving
240 + -38v + -7v2 + v3 = 0

Solving for variable 'v'.

The solution to this equation could not be determined.

See similar equations:

| 3x-5=3x-x+20 | | -p-7-6p=-8p-13 | | x^2+3/4x | | 2y^2=5y | | 10x+6=50+6x | | 2n-7*3=15 | | 8x+7=2x-49 | | 12(x-7)=-3-9 | | 5x+-7=-7+5a | | 12=27 | | -3(6m+9)= | | -8(a+3)-7(1+5a)=-31 | | 4t+9=8+-13 | | (2/9)(9/2)=1 | | 4x-6x+2x-5x= | | 2x+28=-2x | | 4(4x-5)-3(6-2x)=28 | | 12+4(z-1)=32 | | 98-4x=11x | | -4(2d-5)= | | -7(8+2b)=-84 | | 5x+3y=3x+2y+22 | | -4x+6=-20-2x | | 37/9*5 | | 16=3 | | 13=n/-6 | | 72=3y | | 6y-4(y-3)+4= | | 14+(2+c)=(14+2)+c | | 22+x=3/x+2 | | -93=-3(7+8m) | | 7x+2(5x-17)=102 |

Equations solver categories