If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(w)(w+3)=40
We move all terms to the left:
(w)(w+3)-(40)=0
We multiply parentheses
w^2+3w-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| 9d-2=11d+5d+28 | | 1/2k+3=1/3k-10 | | 9d-2=11d+5d | | 4u-4.8=7.6 | | 6z+12z-18-5z=12z+4z-11+2 | | 3y+8=7y+10 | | 3x+9/4x-4=2 | | 2n=14-n | | 1+4(4p-3)=-91 | | 3x+7=5x–3 | | 2(3x+9)=-41+5 | | 5y-1/3=6 | | 9.06x+3.55(7x-4)=12.07x+0.5610 | | 9=6y+3 | | 7x/9-4=45 | | -4(x-3)+5(x+2)-8=x | | 10-a=a | | 5(h+6/5)=2 | | 11x-15=10x+13 | | -7+2x=4x-3 | | x=6(2x-3)=15 | | 20x+945=5145 | | -(g+-63)=-19 | | -110=-5(n+4) | | 3x+3=11+-1+2x | | a³=11 | | .7x+x=221 | | 2t+6=18 | | 8(4+3p)=176 | | -5+2t=5 | | 3x^2-36x=-42 | | (x/4)-(3/5)=(1/6x)-1 |