If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(w-2)w=35
We move all terms to the left:
(w-2)w-(35)=0
We multiply parentheses
w^2-2w-35=0
a = 1; b = -2; c = -35;
Δ = b2-4ac
Δ = -22-4·1·(-35)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-12}{2*1}=\frac{-10}{2} =-5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+12}{2*1}=\frac{14}{2} =7 $
| (w-20w=35 | | -20-x=9x+7 | | 2.33x+.33x=1+1.67x | | 150-x-2x=+120+2x | | 2x2-7x=15 | | .625x+4=0.375x+12 | | q-15=0.2 | | 10(10+y)=121 | | –3r−8=–5r+10 | | 10(10+y)=11 | | 3x-6x=7+2 | | x/10=14/5 | | .33k+80=0.5k+120 | | Y(10+y)=11 | | x+11=−22−2x | | k+11=−22−2k | | 5g-96=51 | | 7b×2=42 | | 8x+4=17x+11 | | 24-4x=1(0) | | 132+7w=538 | | n^2+2n=289 | | 2x2+15=11x | | 9x^2-10=26 | | y2+72=0 | | -9=4x7-7-7 | | 6x+6=4+8 | | 10x+x/2=10.5x | | 88y+10=98 | | (4)^2x+1=24 | | -9=4x+7-7 | | 25y+0.5(10+10)=110 |