If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(2x+4)=168
We move all terms to the left:
(x)(2x+4)-(168)=0
We multiply parentheses
2x^2+4x-168=0
a = 2; b = 4; c = -168;
Δ = b2-4ac
Δ = 42-4·2·(-168)
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{85}}{2*2}=\frac{-4-4\sqrt{85}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{85}}{2*2}=\frac{-4+4\sqrt{85}}{4} $
| x(2x+4)=168 | | 20x=171 | | 2y-15=-13 | | 30(x)=18(100) | | xx2=6 | | (3x+1)5/2=243 | | 49^x−6⋅7^x+5=0 | | 5(x-3)=12(x-5) | | 20/80*100=x | | 5d−3=4d+0.5 | | (5x+1)3/2=8 | | 7q−3=2097 | | 10q−3=3q+2097 | | 6p−2=5p+4 | | (5x+4)3/4=64 | | 5i−4=36 | | 8x+3=6x+18 | | 7i−4=2i+36 | | 4j+10=3j+12 | | 9e+6=5e+30 | | 9-y=162 | | y−5=2 | | y−5=+2 | | x-3=x^2-x-18 | | 3p-5=-2p+25 | | 0.5+0.3x=0.7x+0.3 | | 4x/2x=-5 | | x+4/2x-3=3/5 | | x-32=9/5x | | 2t-1=18 | | 69+x=120 | | r-593=7 |