If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(4x+6)=180
We move all terms to the left:
(x)(4x+6)-(180)=0
We multiply parentheses
4x^2+6x-180=0
a = 4; b = 6; c = -180;
Δ = b2-4ac
Δ = 62-4·4·(-180)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-54}{2*4}=\frac{-60}{8} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+54}{2*4}=\frac{48}{8} =6 $
| 6u-5u=18 | | -2d/3+3=-12 | | 2x/5+4=11 | | 2=1.08n | | X+6=7x+10 | | 11h+158=311(23h−167) | | 10x+20=2x+40 | | 5(15a−2)=12(12a+20) | | 28=17x/32-23 | | 2x+9=11111 | | 8w+81=17w | | -1/4=3/5c | | 25=7+3k-1× | | -6/22=3/5c | | 240-2x=51 | | x/19=14/38 | | 8p+5=13 | | x19=1438 | | 7b-0.2=7b | | -4+2a=12-1a+a | | 10x+20=2x+50 | | (-4x+52)+(10x-10)=90 | | -2y+4=-2(2y)+2 | | -6(w+1)=2(1-3w)+1 | | -2(x-x-3)=6x | | 6=15/3x | | 7b-0.02=8b | | y+2+2y-5=180 | | 29=x/14 | | (6+w)(2w+1)=0 | | -2(×-x-3)=6x | | 9c-31=4 |