(x)(x+1)=35+11(x)+(x+1)

Simple and best practice solution for (x)(x+1)=35+11(x)+(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)(x+1)=35+11(x)+(x+1) equation:



(x)(x+1)=35+11(x)+(x+1)
We move all terms to the left:
(x)(x+1)-(35+11(x)+(x+1))=0
We multiply parentheses
x^2+x-(35+11x+(x+1))=0
We calculate terms in parentheses: -(35+11x+(x+1)), so:
35+11x+(x+1)
determiningTheFunctionDomain 11x+(x+1)+35
We get rid of parentheses
11x+x+1+35
We add all the numbers together, and all the variables
12x+36
Back to the equation:
-(12x+36)
We get rid of parentheses
x^2+x-12x-36=0
We add all the numbers together, and all the variables
x^2-11x-36=0
a = 1; b = -11; c = -36;
Δ = b2-4ac
Δ = -112-4·1·(-36)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{265}}{2*1}=\frac{11-\sqrt{265}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{265}}{2*1}=\frac{11+\sqrt{265}}{2} $

See similar equations:

| 7(m-1)=20 | | 20n+-28=10n+2 | | 2+45b=910b | | 5x=6x-17 | | 257.28=8(0.05m+21.70 | | 6x+1+6x-14+9x+4=180 | | -10x+1=-3(2x-5)+6 | | y+76=5y | | 32u+-8+-12u=22u+-66 | | -6+4=2y-3y= | | 6(2p+3)=42 | | 5(5n-n=40 | | E^x=7.9 | | 3t^2-12t+19=0 | | (2x+11)+6x-7)=180 | | 2a-4a=12a= | | 20=24-4f | | 5j−j=12 | | 54=9(t+2) | | 19.99+0.21m=52.24 | | 5=5(n-85) | | 2(4x+25)-80=98-4(4x-4) | | 66=4+77n | | 5z/8-5z/9=1 | | 5s−s=20 | | -x-(1/2x)=9 | | x*8/3+65=81 | | 10x30=4x-18 | | 6j+9=93 | | 7+(x-4)-10=-45 | | 1/3+a=2/4 | | 2/5(21/2x−15)=11/2+(31 2−1/4x) |

Equations solver categories