If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(x+14)=51
We move all terms to the left:
(x)(x+14)-(51)=0
We multiply parentheses
x^2+14x-51=0
a = 1; b = 14; c = -51;
Δ = b2-4ac
Δ = 142-4·1·(-51)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-20}{2*1}=\frac{-34}{2} =-17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+20}{2*1}=\frac{6}{2} =3 $
| 4x-13+20x-10=x^2=1 | | | | -w+10=-5+2w | | x^2−6x+32=0 | | (x-1)+1x+95+145+101=540 | | -2f+5=-3f | | | | 6x-50+2x+70=180 | | 3x-7-2/(9x-6)=15 | | -0.68x+0.38x=8.7 | | x^2+13x−3=0 | | 6-2(3x-4)=3x-4-x+2 | | 16x=2/3 | | | | 1.5=6.25y | | | | h/–1+4=6 | | 10x-32+7x-10=2x+143 | | h–1+ 4=6 | | 5x-20=x+60 | | 6x-16+6+19+57=180 | | 97=-3(6h-5)-8 | | Y=x^2+12x=33 | | x2−14x−15=0 | | P(x)=6.4x2-x | | 7=-5n(n-4)-3 | | x=5,x2+2(x+6) | | 2c=c+24 | | -3x+-2=-3-3x | | s=42+-2 | | 7(x+3)+7(−5x−7)=−56 | | 15x=180/6 |