If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(x-3)=40
We move all terms to the left:
(x)(x-3)-(40)=0
We multiply parentheses
x^2-3x-40=0
a = 1; b = -3; c = -40;
Δ = b2-4ac
Δ = -32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-13}{2*1}=\frac{-10}{2} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+13}{2*1}=\frac{16}{2} =8 $
| 12y-12y=24-24 | | 3.5/x=1 | | 40-5p=3p+8 | | 3.5/x=26 | | 0.0169=cπ2 | | 9m-(4m-8)=-13 | | )5x+62x-9=5 | | -4y^2-21y-5=0 | | 4/3=n-5/6 | | 84=19=z/12 | | 2x+3(x+5)=25 | | 8x+16=11x+1 | | 4+1/3t+t=12 | | 7+5=f | | -4*x3+12*x2-9*x=0 | | 2x-5/4-x/3=2-x+4/6 | | 22=5u-8 | | 50=-3(z–12)+17 | | 4x^2-144=-44 | | -18n+4=14n-4 | | 4*x3+-12*x2+9*x=0 | | S=3x | | 5+2t=15 | | 250+25m=50 | | 8z-11z=3z+32 | | 6t+(3•10-8)=(2•3)t+22 | | -3(7-y)+4=-4 | | 5+2t=1 | | 0.6k=42 | | A=2(x+15) | | 5=6(p-5)-9 | | |8x-8|=1 |