(x)+(1/3x-1)=139

Simple and best practice solution for (x)+(1/3x-1)=139 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)+(1/3x-1)=139 equation:



(x)+(1/3x-1)=139
We move all terms to the left:
(x)+(1/3x-1)-(139)=0
Domain of the equation: 3x-1)!=0
x∈R
We get rid of parentheses
x+1/3x-1-139=0
We multiply all the terms by the denominator
x*3x-1*3x-139*3x+1=0
Wy multiply elements
3x^2-3x-417x+1=0
We add all the numbers together, and all the variables
3x^2-420x+1=0
a = 3; b = -420; c = +1;
Δ = b2-4ac
Δ = -4202-4·3·1
Δ = 176388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176388}=\sqrt{4*44097}=\sqrt{4}*\sqrt{44097}=2\sqrt{44097}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-420)-2\sqrt{44097}}{2*3}=\frac{420-2\sqrt{44097}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-420)+2\sqrt{44097}}{2*3}=\frac{420+2\sqrt{44097}}{6} $

See similar equations:

| 5-5=4x-2x.0=2x.2x=0.X=0÷2=0 | | 5y-y=-12 | | 20q−15q−q=16 | | 1/2p-3=2-2/3p | | 13k−6k−3k+2k+3k=18 | | 20u-19u=16 | | 6w-5w=6 | | (13x-5)+(7x+31)=x | | -11.1=8.2+y/6 | | 20g-19g=18 | | 8a=10=42 | | 9x+6=-15 | | 17t-16t=2 | | 6p-4=68 | | 47+3x=54 | | (k=7)^2=289 | | 2y-21=90+2y | | 100000=70000*(1.05^x) | | (x-4)^2=196 | | 100000=70000*1.05^x | | 8-1(4c-5)=11 | | 2x-1^3=63 | | x²+5x+5.5=0 | | x+3^3=48 | | 7+10x=28+11x | | 3y+5=y+45 | | x+3x3=48 | | x+3•3=48 | | -7x-3x+2=8x=8 | | 2x-21+x+1=180 | | 2x^+5x=3=0 | | 7x+2=-62 |

Equations solver categories