If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)=(-2x+3)(-x+3)
We move all terms to the left:
(x)-((-2x+3)(-x+3))=0
We add all the numbers together, and all the variables
x-((-2x+3)(-1x+3))=0
We multiply parentheses ..
-((+2x^2-6x-3x+9))+x=0
We calculate terms in parentheses: -((+2x^2-6x-3x+9)), so:We add all the numbers together, and all the variables
(+2x^2-6x-3x+9)
We get rid of parentheses
2x^2-6x-3x+9
We add all the numbers together, and all the variables
2x^2-9x+9
Back to the equation:
-(2x^2-9x+9)
x-(2x^2-9x+9)=0
We get rid of parentheses
-2x^2+x+9x-9=0
We add all the numbers together, and all the variables
-2x^2+10x-9=0
a = -2; b = 10; c = -9;
Δ = b2-4ac
Δ = 102-4·(-2)·(-9)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{7}}{2*-2}=\frac{-10-2\sqrt{7}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{7}}{2*-2}=\frac{-10+2\sqrt{7}}{-4} $
| T=65t | | 2x+1/28=231 | | 2c+12=24 | | 120+10m=176-4m | | 2x+2+3x+4+75=180 | | 4-14m=2m-5 | | 6x-12-12=0 | | 58-2x=10-2x | | 108=-16x^2+96x | | 2/5x-1/5x=x-1 | | 9x+40=23x | | 7x-9x2=x-6 | | C=37.08+0.25x | | x+26=8x | | -7.38r=2.05=-7.38 | | 14+3n=8n+-3n-12 | | p−19/6=−5/2p= | | 19.95t+2.50t+3.95t=-45 | | 240x+0.25=180x+0.40 | | -4/5w=12/17 | | -1911+8q=3q | | 4x-3(5-x)=2(x-6) | | 11=4-5x | | -n/4=23 | | 3j+18=12j | | n-1/2=3/2 | | 1/2x=1/6(x-18) | | 26x^2-88x-46=0 | | 13×j=72 | | 50+x-50=25+x-100 | | 3x-7-5x=57 | | 72.5n=145 |