If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)=(2-x)(x-9)
We move all terms to the left:
(x)-((2-x)(x-9))=0
We add all the numbers together, and all the variables
x-((-1x+2)(x-9))=0
We multiply parentheses ..
-((-1x^2+9x+2x-18))+x=0
We calculate terms in parentheses: -((-1x^2+9x+2x-18)), so:We get rid of parentheses
(-1x^2+9x+2x-18)
We get rid of parentheses
-1x^2+9x+2x-18
We add all the numbers together, and all the variables
-1x^2+11x-18
Back to the equation:
-(-1x^2+11x-18)
1x^2-11x+x+18=0
We add all the numbers together, and all the variables
x^2-10x+18=0
a = 1; b = -10; c = +18;
Δ = b2-4ac
Δ = -102-4·1·18
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*1}=\frac{10-2\sqrt{7}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*1}=\frac{10+2\sqrt{7}}{2} $
| 8x+9=4x+23= | | 2^x=2.56 | | 7x+8=47/5 | | 14=z/2+10 | | z/10+2=9z= | | 5x+6=-14x= | | x+2=x4+5 | | 8x-5x+155=8x+70 | | (x-1)(x-2)(x+3)=96 | | 35=(5x+9) | | (x+3)(x-2)(x-1)=96 | | 3(f+1)=3(2f+1) | | X+{4(x+1)}+3=97 | | X+(2x-4)=23 | | 13.47h-0.06=14.23h-0.15 | | 5p-4=3p+1/4 | | 12x−9=56 | | 5−(3+x)=10−3x | | 24.50m+22=18.25m+47 | | 2(6t-1)=t=12-t | | 2x+(39÷4)=5 | | +y=25-12y=64 | | 13^(-9x-5)=169 | | 4x=-54+3x-8x | | 7^{9+2x}=21 | | (4x+8)x=0 | | 175m-100m+48,750=50,500-175m | | 4x-2=3x+$ | | (7b+21)/(5b-18)=0 | | (9x+5)x=0 | | 0.125x=0,025(5x+1) | | 16-2m/3=5 |