If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)=6x^2+18x+3
We move all terms to the left:
(x)-(6x^2+18x+3)=0
We get rid of parentheses
-6x^2+x-18x-3=0
We add all the numbers together, and all the variables
-6x^2-17x-3=0
a = -6; b = -17; c = -3;
Δ = b2-4ac
Δ = -172-4·(-6)·(-3)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{217}}{2*-6}=\frac{17-\sqrt{217}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{217}}{2*-6}=\frac{17+\sqrt{217}}{-12} $
| -5/2+6/5x=-5/3 | | 2x-11/2=9 | | 5(-7x+1)=-205 | | 5x-2(x+3)=4 | | 114=-12x-60 | | 14.3p-32.34=127.92 | | X2+20x+84=0 | | 2(1-x)+3=-2 | | -1/5=-1/2x+2/3 | | (6x-20)+(6x-4)=180 | | 10x2-17x+3=0 | | 4x+0.75=10 | | (x+20)+(4x-5)=180 | | 16+3c=5(c-4) | | -4-6(7-4a)=98 | | (x-14)+(10x-4)=180 | | 1+3x=10x^2 | | 3×3y+136=180 | | -5x-16=18 | | $12.50x+$7.50=$50.00 | | 3y-3+136=180 | | 3z-24=81 | | 3y×3=136 | | 7x-5=-4×+2 | | 12.50x+7.50=50 | | -2=-3+3x | | (5x-6)+3x+x=180 | | 0.7m-8=2.3m+14 | | -3(4x+8)+2=-58 | | 0,15x=0,05x+12 | | n-1-4n=-10 | | 5a–103=45 |