(x*(x+4))/2=40

Simple and best practice solution for (x*(x+4))/2=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x*(x+4))/2=40 equation:



(x*(x+4))/2=40
We move all terms to the left:
(x*(x+4))/2-(40)=0
We multiply all the terms by the denominator
(x*(x+4))-40*2=0
We calculate terms in parentheses: +(x*(x+4)), so:
x*(x+4)
We multiply parentheses
x^2+4x
Back to the equation:
+(x^2+4x)
We add all the numbers together, and all the variables
(x^2+4x)-80=0
We get rid of parentheses
x^2+4x-80=0
a = 1; b = 4; c = -80;
Δ = b2-4ac
Δ = 42-4·1·(-80)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{21}}{2*1}=\frac{-4-4\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{21}}{2*1}=\frac{-4+4\sqrt{21}}{2} $

See similar equations:

| 10m-14=-28 | | |y|-24=-15 | | 7(t+2)=7+2 | | 21x+4=5 | | X-6=42-7x | | 11s^2-14s+3=0 | | 4z−47=45 | | 3m^2-12m+8=0 | | m-40=7 | | 13=2.5h-4 | | 181=32-u | | 200/x=1 | | 4/5n=17 | | 4(6x-10)=8x=40 | | 1/2*(14n+18)=4(5n-1) | | 214=94-y | | 3^(x+1)+3^(x-1)=30 | | j/13=26 | | 6h=144 | | 6x-10(-x+17)=-10 | | x*(x+4)=40 | | y=11-2•-3 | | 2(x–8)=–22 | | 4a-10-a=9+3a-19 | | x-670=20 | | 3.2x10^-2=8x10^3 | | 2/3(3r+4)=10 | | -3x=x×-3 | | 14=2-5k+3k-4 | | 6-5x=5x-10x+20 | | -12x-7=8x+29 | | 251=109-w |

Equations solver categories