(x+(1+i))(x-(1-i))(x-2)=0

Simple and best practice solution for (x+(1+i))(x-(1-i))(x-2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+(1+i))(x-(1-i))(x-2)=0 equation:


Simplifying
(x + (1 + i))(x + -1(1 + -1i))(x + -2) = 0

Remove parenthesis around (1 + i)
(x + 1 + i)(x + -1(1 + -1i))(x + -2) = 0

Reorder the terms:
(1 + i + x)(x + -1(1 + -1i))(x + -2) = 0
(1 + i + x)(x + (1 * -1 + -1i * -1))(x + -2) = 0
(1 + i + x)(x + (-1 + 1i))(x + -2) = 0

Reorder the terms:
(1 + i + x)(-1 + 1i + x)(x + -2) = 0

Reorder the terms:
(1 + i + x)(-1 + 1i + x)(-2 + x) = 0

Multiply (1 + i + x) * (-1 + 1i + x)
(1(-1 + 1i + x) + i(-1 + 1i + x) + x(-1 + 1i + x))(-2 + x) = 0
((-1 * 1 + 1i * 1 + x * 1) + i(-1 + 1i + x) + x(-1 + 1i + x))(-2 + x) = 0
((-1 + 1i + 1x) + i(-1 + 1i + x) + x(-1 + 1i + x))(-2 + x) = 0
(-1 + 1i + 1x + (-1 * i + 1i * i + x * i) + x(-1 + 1i + x))(-2 + x) = 0

Reorder the terms:
(-1 + 1i + 1x + (-1i + ix + 1i2) + x(-1 + 1i + x))(-2 + x) = 0
(-1 + 1i + 1x + (-1i + ix + 1i2) + x(-1 + 1i + x))(-2 + x) = 0
(-1 + 1i + 1x + -1i + ix + 1i2 + (-1 * x + 1i * x + x * x))(-2 + x) = 0

Reorder the terms:
(-1 + 1i + 1x + -1i + ix + 1i2 + (1ix + -1x + x2))(-2 + x) = 0
(-1 + 1i + 1x + -1i + ix + 1i2 + (1ix + -1x + x2))(-2 + x) = 0

Reorder the terms:
(-1 + 1i + -1i + ix + 1ix + 1i2 + 1x + -1x + x2)(-2 + x) = 0

Combine like terms: 1i + -1i = 0
(-1 + 0 + ix + 1ix + 1i2 + 1x + -1x + x2)(-2 + x) = 0
(-1 + ix + 1ix + 1i2 + 1x + -1x + x2)(-2 + x) = 0

Combine like terms: ix + 1ix = 2ix
(-1 + 2ix + 1i2 + 1x + -1x + x2)(-2 + x) = 0

Combine like terms: 1x + -1x = 0
(-1 + 2ix + 1i2 + 0 + x2)(-2 + x) = 0
(-1 + 2ix + 1i2 + x2)(-2 + x) = 0

Multiply (-1 + 2ix + 1i2 + x2) * (-2 + x)
(-1(-2 + x) + 2ix * (-2 + x) + 1i2 * (-2 + x) + x2(-2 + x)) = 0
((-2 * -1 + x * -1) + 2ix * (-2 + x) + 1i2 * (-2 + x) + x2(-2 + x)) = 0
((2 + -1x) + 2ix * (-2 + x) + 1i2 * (-2 + x) + x2(-2 + x)) = 0
(2 + -1x + (-2 * 2ix + x * 2ix) + 1i2 * (-2 + x) + x2(-2 + x)) = 0
(2 + -1x + (-4ix + 2ix2) + 1i2 * (-2 + x) + x2(-2 + x)) = 0
(2 + -1x + -4ix + 2ix2 + (-2 * 1i2 + x * 1i2) + x2(-2 + x)) = 0
(2 + -1x + -4ix + 2ix2 + (-2i2 + 1i2x) + x2(-2 + x)) = 0
(2 + -1x + -4ix + 2ix2 + -2i2 + 1i2x + (-2 * x2 + x * x2)) = 0
(2 + -1x + -4ix + 2ix2 + -2i2 + 1i2x + (-2x2 + x3)) = 0

Reorder the terms:
(2 + -4ix + 2ix2 + -2i2 + 1i2x + -1x + -2x2 + x3) = 0
(2 + -4ix + 2ix2 + -2i2 + 1i2x + -1x + -2x2 + x3) = 0

Solving
2 + -4ix + 2ix2 + -2i2 + 1i2x + -1x + -2x2 + x3 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| 7-3x=23-x | | 19=-3+7p+1-4p | | -36=-2y | | (6-3i)-(5+4i)=0 | | 35x^2=25 | | cos(x)sin(x)=-0.25 | | log(x)+log(2x+3)=2 | | 12-8+4= | | 3(x-21)=60 | | .125y-65=0 | | 9x+18=5(x+7)+15 | | 8=8p+1.3-3p | | 60.54-45.8= | | 656=16t^2 | | x^2+y^2=4xy-8 | | 4a-5b+6a-7b= | | N+9n= | | -3(b+17)=-93 | | 7y=-2x+0 | | 2/5t==12/25 | | 3n-4+n=22 | | 24+2x=32+(2x-4) | | 5x+11=3x-19 | | -7+12=9 | | 8-5/x=23/x | | Y=50(150) | | 19-n=30 | | 3x-4+n=22 | | -2(-3)+11=1(-3)+2 | | -2y+2=-7v+17 | | 2k^2+14k+35=0 | | 1+23=-4(2x-6) |

Equations solver categories