(x+-5)(45+-1x+-5)=4(45-x-5))

Simple and best practice solution for (x+-5)(45+-1x+-5)=4(45-x-5)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+-5)(45+-1x+-5)=4(45-x-5)) equation:



(x+-5)(45+-1x+-5)=4(45-x-5))
We move all terms to the left:
(x+-5)(45+-1x+-5)-(4(45-x-5)))=0
We add all the numbers together, and all the variables
(x-5)(-1x)-(4(-1x+40)))=0
We multiply parentheses ..
(-1x^2+5x)-(4(-1x+40)))=0
We calculate terms in parentheses: -(4(-1x+40))), so:
4(-1x+40))
We multiply parentheses
-4x+
We add all the numbers together, and all the variables
-4x
Back to the equation:
-(-4x)
We get rid of parentheses
-1x^2+5x+4x=0
We add all the numbers together, and all the variables
-1x^2+9x=0
a = -1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-1)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-1}=\frac{-18}{-2} =+9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-1}=\frac{0}{-2} =0 $

See similar equations:

| 1.331=c2 | | −10x+3=3−7x−3 | | 1/8=z2 | | 0.9x^2-0.6x-0.009=-0.08 | | 26+r÷15=21 | | 1,290=h/5+h/10 | | 17+11z+14z=14z-16 | | 2x-3+6x+10=22 | | -67-7=93+9z | | -3b+2=-13 | | a/2=-12 | | 15/x=11 | | a÷2=-12 | | 11/15=x | | F(x)=1/2^2-4 | | d/5-2=18 | | x*12=-144 | | 679+x=2645 | | x+-39=55 | | (0.4-x)(0.2-x)/(0.6+2x)^2=0.025 | | 3(x/2-16)-30=50-1/3x | | 15+0.50p=p | | 2^y+9=11 | | 4^n·4^2=16384 | | A={nꞓN,n6} | | 5x+65=10x+35 | | (3x+11)°=(2x+4)° | | 7=5–2k | | -50c-c=5c-2 | | 2.3(c-11)=16.1 | | -17+7k=10-8(-9-5k | | 4.8(x-2.5)=-(9.6 |

Equations solver categories