(x+1)(x+1)(x+1)(x+1)+16=0

Simple and best practice solution for (x+1)(x+1)(x+1)(x+1)+16=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)(x+1)(x+1)+16=0 equation:


Simplifying
(x + 1)(x + 1)(x + 1)(x + 1) + 16 = 0

Reorder the terms:
(1 + x)(x + 1)(x + 1)(x + 1) + 16 = 0

Reorder the terms:
(1 + x)(1 + x)(x + 1)(x + 1) + 16 = 0

Reorder the terms:
(1 + x)(1 + x)(1 + x)(x + 1) + 16 = 0

Reorder the terms:
(1 + x)(1 + x)(1 + x)(1 + x) + 16 = 0

Multiply (1 + x) * (1 + x)
(1(1 + x) + x(1 + x))(1 + x)(1 + x) + 16 = 0
((1 * 1 + x * 1) + x(1 + x))(1 + x)(1 + x) + 16 = 0
((1 + 1x) + x(1 + x))(1 + x)(1 + x) + 16 = 0
(1 + 1x + (1 * x + x * x))(1 + x)(1 + x) + 16 = 0
(1 + 1x + (1x + x2))(1 + x)(1 + x) + 16 = 0

Combine like terms: 1x + 1x = 2x
(1 + 2x + x2)(1 + x)(1 + x) + 16 = 0

Multiply (1 + 2x + x2) * (1 + x)
(1(1 + x) + 2x * (1 + x) + x2(1 + x))(1 + x) + 16 = 0
((1 * 1 + x * 1) + 2x * (1 + x) + x2(1 + x))(1 + x) + 16 = 0
((1 + 1x) + 2x * (1 + x) + x2(1 + x))(1 + x) + 16 = 0
(1 + 1x + (1 * 2x + x * 2x) + x2(1 + x))(1 + x) + 16 = 0
(1 + 1x + (2x + 2x2) + x2(1 + x))(1 + x) + 16 = 0
(1 + 1x + 2x + 2x2 + (1 * x2 + x * x2))(1 + x) + 16 = 0
(1 + 1x + 2x + 2x2 + (1x2 + x3))(1 + x) + 16 = 0

Combine like terms: 1x + 2x = 3x
(1 + 3x + 2x2 + 1x2 + x3)(1 + x) + 16 = 0

Combine like terms: 2x2 + 1x2 = 3x2
(1 + 3x + 3x2 + x3)(1 + x) + 16 = 0

Multiply (1 + 3x + 3x2 + x3) * (1 + x)
(1(1 + x) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) + 16 = 0
((1 * 1 + x * 1) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) + 16 = 0
((1 + 1x) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) + 16 = 0
(1 + 1x + (1 * 3x + x * 3x) + 3x2 * (1 + x) + x3(1 + x)) + 16 = 0
(1 + 1x + (3x + 3x2) + 3x2 * (1 + x) + x3(1 + x)) + 16 = 0
(1 + 1x + 3x + 3x2 + (1 * 3x2 + x * 3x2) + x3(1 + x)) + 16 = 0
(1 + 1x + 3x + 3x2 + (3x2 + 3x3) + x3(1 + x)) + 16 = 0
(1 + 1x + 3x + 3x2 + 3x2 + 3x3 + (1 * x3 + x * x3)) + 16 = 0
(1 + 1x + 3x + 3x2 + 3x2 + 3x3 + (1x3 + x4)) + 16 = 0

Combine like terms: 1x + 3x = 4x
(1 + 4x + 3x2 + 3x2 + 3x3 + 1x3 + x4) + 16 = 0

Combine like terms: 3x2 + 3x2 = 6x2
(1 + 4x + 6x2 + 3x3 + 1x3 + x4) + 16 = 0

Combine like terms: 3x3 + 1x3 = 4x3
(1 + 4x + 6x2 + 4x3 + x4) + 16 = 0

Reorder the terms:
1 + 16 + 4x + 6x2 + 4x3 + x4 = 0

Combine like terms: 1 + 16 = 17
17 + 4x + 6x2 + 4x3 + x4 = 0

Solving
17 + 4x + 6x2 + 4x3 + x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 8t=-3+9t | | 0.5x+0.6y=1.8 | | c-89.9=-102.9 | | (5a-3b)(5a+9b)= | | 6x-8=3x-11 | | x-4=x^2-12x+36 | | 13k-9=5k+7 | | 4(3c-1)-5=10c+5 | | 10+n=-10+3n | | 14065=1x+64.7x | | -3/4(8x-12)=5x-2 | | X+(x-2.4)=8.1 | | 0.6z^2+Z-2.4=0 | | 24+2y-1=11y-12-4y | | n-8-18=-23 | | X+4=x+6 | | 4z+6-2z=8+2+7 | | 13(1+2r)=-65 | | -(-x-4)=6 | | 6x=40x | | 5(m-2)+2=-5-(2m+3)-2m | | y=1/3(-6) | | .5(4x+6)=2x-4 | | 3(4x+2)-5(x-4)=4x+14+x | | 4n+n=35 | | -13x-20=-10x+115 | | 74=53-7x | | 2n=-4+7n | | x^3=37.5 | | (-6a-b)-(4b+a)= | | 1/7(14-7p)-2=1/2(2p-6) | | 9x+2=8x |

Equations solver categories