(x+1)(x+1)(x+1)(x+1)=0

Simple and best practice solution for (x+1)(x+1)(x+1)(x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)(x+1)(x+1)=0 equation:


Simplifying
(x + 1)(x + 1)(x + 1)(x + 1) = 0

Reorder the terms:
(1 + x)(x + 1)(x + 1)(x + 1) = 0

Reorder the terms:
(1 + x)(1 + x)(x + 1)(x + 1) = 0

Reorder the terms:
(1 + x)(1 + x)(1 + x)(x + 1) = 0

Reorder the terms:
(1 + x)(1 + x)(1 + x)(1 + x) = 0

Multiply (1 + x) * (1 + x)
(1(1 + x) + x(1 + x))(1 + x)(1 + x) = 0
((1 * 1 + x * 1) + x(1 + x))(1 + x)(1 + x) = 0
((1 + 1x) + x(1 + x))(1 + x)(1 + x) = 0
(1 + 1x + (1 * x + x * x))(1 + x)(1 + x) = 0
(1 + 1x + (1x + x2))(1 + x)(1 + x) = 0

Combine like terms: 1x + 1x = 2x
(1 + 2x + x2)(1 + x)(1 + x) = 0

Multiply (1 + 2x + x2) * (1 + x)
(1(1 + x) + 2x * (1 + x) + x2(1 + x))(1 + x) = 0
((1 * 1 + x * 1) + 2x * (1 + x) + x2(1 + x))(1 + x) = 0
((1 + 1x) + 2x * (1 + x) + x2(1 + x))(1 + x) = 0
(1 + 1x + (1 * 2x + x * 2x) + x2(1 + x))(1 + x) = 0
(1 + 1x + (2x + 2x2) + x2(1 + x))(1 + x) = 0
(1 + 1x + 2x + 2x2 + (1 * x2 + x * x2))(1 + x) = 0
(1 + 1x + 2x + 2x2 + (1x2 + x3))(1 + x) = 0

Combine like terms: 1x + 2x = 3x
(1 + 3x + 2x2 + 1x2 + x3)(1 + x) = 0

Combine like terms: 2x2 + 1x2 = 3x2
(1 + 3x + 3x2 + x3)(1 + x) = 0

Multiply (1 + 3x + 3x2 + x3) * (1 + x)
(1(1 + x) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) = 0
((1 * 1 + x * 1) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) = 0
((1 + 1x) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) = 0
(1 + 1x + (1 * 3x + x * 3x) + 3x2 * (1 + x) + x3(1 + x)) = 0
(1 + 1x + (3x + 3x2) + 3x2 * (1 + x) + x3(1 + x)) = 0
(1 + 1x + 3x + 3x2 + (1 * 3x2 + x * 3x2) + x3(1 + x)) = 0
(1 + 1x + 3x + 3x2 + (3x2 + 3x3) + x3(1 + x)) = 0
(1 + 1x + 3x + 3x2 + 3x2 + 3x3 + (1 * x3 + x * x3)) = 0
(1 + 1x + 3x + 3x2 + 3x2 + 3x3 + (1x3 + x4)) = 0

Combine like terms: 1x + 3x = 4x
(1 + 4x + 3x2 + 3x2 + 3x3 + 1x3 + x4) = 0

Combine like terms: 3x2 + 3x2 = 6x2
(1 + 4x + 6x2 + 3x3 + 1x3 + x4) = 0

Combine like terms: 3x3 + 1x3 = 4x3
(1 + 4x + 6x2 + 4x3 + x4) = 0

Solving
1 + 4x + 6x2 + 4x3 + x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| 6(m-4)=4m-2 | | 35x/5x | | 1/3(6-y)=y | | (x+1)(x+1)=2 | | 3tx/5x | | 50=5t-2t+7t | | (-4x^2y)(3xy^3)= | | 9(46-1)=2(9b+3) | | y=122-x | | 8h+3=3h+13 | | 2n-12=10 | | (5x+3)(4x+2)= | | 7c+8=36 | | 4(k+2)=3 | | 3(x-6)=2(x-8) | | -3+4=-8 | | n/3-8=-3 | | 5z-8(z-3)=20 | | 2x^4+4x^3=0 | | 4-6x=-5-9 | | 5x+6(x-2)=15 | | 73k/8=9l | | 6+5e=-29 | | 3(x-5)=10 | | 2x^4+4x^3+6x^2+4x-31=0 | | 3(x+4)=2x-8 | | 4x-(x^2-4)=2x-4 | | x^4+7x^3+35x^2+175x+250=0 | | 5z^2+15z-20=0 | | 1/4(12-8x)=-8x-24 | | -x^2-10x-42=0 | | F(x)=sin(2x)ln(x^2) |

Equations solver categories