(x+1)(x+1)(x+1)(x+1)=5

Simple and best practice solution for (x+1)(x+1)(x+1)(x+1)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)(x+1)(x+1)=5 equation:


Simplifying
(x + 1)(x + 1)(x + 1)(x + 1) = 5

Reorder the terms:
(1 + x)(x + 1)(x + 1)(x + 1) = 5

Reorder the terms:
(1 + x)(1 + x)(x + 1)(x + 1) = 5

Reorder the terms:
(1 + x)(1 + x)(1 + x)(x + 1) = 5

Reorder the terms:
(1 + x)(1 + x)(1 + x)(1 + x) = 5

Multiply (1 + x) * (1 + x)
(1(1 + x) + x(1 + x))(1 + x)(1 + x) = 5
((1 * 1 + x * 1) + x(1 + x))(1 + x)(1 + x) = 5
((1 + 1x) + x(1 + x))(1 + x)(1 + x) = 5
(1 + 1x + (1 * x + x * x))(1 + x)(1 + x) = 5
(1 + 1x + (1x + x2))(1 + x)(1 + x) = 5

Combine like terms: 1x + 1x = 2x
(1 + 2x + x2)(1 + x)(1 + x) = 5

Multiply (1 + 2x + x2) * (1 + x)
(1(1 + x) + 2x * (1 + x) + x2(1 + x))(1 + x) = 5
((1 * 1 + x * 1) + 2x * (1 + x) + x2(1 + x))(1 + x) = 5
((1 + 1x) + 2x * (1 + x) + x2(1 + x))(1 + x) = 5
(1 + 1x + (1 * 2x + x * 2x) + x2(1 + x))(1 + x) = 5
(1 + 1x + (2x + 2x2) + x2(1 + x))(1 + x) = 5
(1 + 1x + 2x + 2x2 + (1 * x2 + x * x2))(1 + x) = 5
(1 + 1x + 2x + 2x2 + (1x2 + x3))(1 + x) = 5

Combine like terms: 1x + 2x = 3x
(1 + 3x + 2x2 + 1x2 + x3)(1 + x) = 5

Combine like terms: 2x2 + 1x2 = 3x2
(1 + 3x + 3x2 + x3)(1 + x) = 5

Multiply (1 + 3x + 3x2 + x3) * (1 + x)
(1(1 + x) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) = 5
((1 * 1 + x * 1) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) = 5
((1 + 1x) + 3x * (1 + x) + 3x2 * (1 + x) + x3(1 + x)) = 5
(1 + 1x + (1 * 3x + x * 3x) + 3x2 * (1 + x) + x3(1 + x)) = 5
(1 + 1x + (3x + 3x2) + 3x2 * (1 + x) + x3(1 + x)) = 5
(1 + 1x + 3x + 3x2 + (1 * 3x2 + x * 3x2) + x3(1 + x)) = 5
(1 + 1x + 3x + 3x2 + (3x2 + 3x3) + x3(1 + x)) = 5
(1 + 1x + 3x + 3x2 + 3x2 + 3x3 + (1 * x3 + x * x3)) = 5
(1 + 1x + 3x + 3x2 + 3x2 + 3x3 + (1x3 + x4)) = 5

Combine like terms: 1x + 3x = 4x
(1 + 4x + 3x2 + 3x2 + 3x3 + 1x3 + x4) = 5

Combine like terms: 3x2 + 3x2 = 6x2
(1 + 4x + 6x2 + 3x3 + 1x3 + x4) = 5

Combine like terms: 3x3 + 1x3 = 4x3
(1 + 4x + 6x2 + 4x3 + x4) = 5

Solving
1 + 4x + 6x2 + 4x3 + x4 = 5

Solving for variable 'x'.

Reorder the terms:
1 + -5 + 4x + 6x2 + 4x3 + x4 = 5 + -5

Combine like terms: 1 + -5 = -4
-4 + 4x + 6x2 + 4x3 + x4 = 5 + -5

Combine like terms: 5 + -5 = 0
-4 + 4x + 6x2 + 4x3 + x4 = 0

The solution to this equation could not be determined.

See similar equations:

| 54=12x | | 6g+36=12 | | 7+3(-1x+4)=10 | | 9p+5=-14 | | 3(u-2)=7u+14 | | 9/10n= | | 5(q+2)+3q=-22 | | 5(q+2)3q=-22 | | 3(x+3)-7x=-15 | | 15=2(3.14)R | | 10x+22(x-3)=190 | | 4x^2=-20x-19 | | 7x+63=168 | | 34=27+5(x-3.6) | | 3b^2+12b=0 | | 86=-5m+22 | | 5-12w=10-7w | | 38=5x-x+6 | | 2x=3-4 | | -3x-4x=2 | | 36x^2-6=10 | | 9x-(3x-13)=55 | | 5p+3q=-22 | | 0.50(d-500000)=200000 | | 12k=60 | | y-2+2y-7=180 | | 4x-8+3x+10=11x+2y | | 4x-4=20-5x | | 26x+y+x+y=180 | | 6q-61=(-11) | | -2z+3z=-z+8+7z | | 8(13.5+2.5g)+5g=-11 |

Equations solver categories