(x+1)(x+1)-(5-4x)(5-4x)=0

Simple and best practice solution for (x+1)(x+1)-(5-4x)(5-4x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)-(5-4x)(5-4x)=0 equation:



(x+1)(x+1)-(5-4x)(5-4x)=0
We add all the numbers together, and all the variables
(x+1)(x+1)-(-4x+5)(-4x+5)=0
We multiply parentheses ..
(+x^2+x+x+1)-(-4x+5)(-4x+5)=0
We get rid of parentheses
x^2+x+x-(-4x+5)(-4x+5)+1=0
We multiply parentheses ..
x^2-(+16x^2-20x-20x+25)+x+x+1=0
We add all the numbers together, and all the variables
x^2-(+16x^2-20x-20x+25)+2x+1=0
We get rid of parentheses
x^2-16x^2+20x+20x+2x-25+1=0
We add all the numbers together, and all the variables
-15x^2+42x-24=0
a = -15; b = 42; c = -24;
Δ = b2-4ac
Δ = 422-4·(-15)·(-24)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-18}{2*-15}=\frac{-60}{-30} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+18}{2*-15}=\frac{-24}{-30} =4/5 $

See similar equations:

| a/6+8=9 | | (x+1)^2-(5-4x)^2=0 | | 5-3x=10-6x | | 0.1h+2=h+0.2 | | 3(x+30)=15 | | 14=-1(t)2+9(t) | | 14=-1(t)^2+9(t) | | -4b+7=-10b+37 | | 6+17b=-15+14b | | 6(3s+6)=270 | | 4(2l+5)=84 | | (u-10)9=81 | | (q-5)6=24 | | w^2+2w+9=0 | | 10+2x=90+x | | 9t-9=56-t | | 2x*2x+2x+10=0 | | X+(20x30)=430 | | X+20x30=430 | | (A+1)(a-2)=a=3 | | -d+18d=17d | | 45+3x=14 | | X^2-13y^2=1 | | 9^x=0.7 | | 0,8=4/x | | 2(x+1)+4=6(3x-6) | | 0,8=2/x | | x/3-x=1+x | | 1/2x1/3=1/6x | | 3x+20=70−2x | | 2=a/1 | | |10-2x|=14 |

Equations solver categories