(x+1)(x+1)=2(x-1)(x-1)

Simple and best practice solution for (x+1)(x+1)=2(x-1)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+1)=2(x-1)(x-1) equation:



(x+1)(x+1)=2(x-1)(x-1)
We move all terms to the left:
(x+1)(x+1)-(2(x-1)(x-1))=0
We multiply parentheses ..
(+x^2+x+x+1)-(2(x-1)(x-1))=0
We calculate terms in parentheses: -(2(x-1)(x-1)), so:
2(x-1)(x-1)
We multiply parentheses ..
2(+x^2-1x-1x+1)
We multiply parentheses
2x^2-2x-2x+2
We add all the numbers together, and all the variables
2x^2-4x+2
Back to the equation:
-(2x^2-4x+2)
We get rid of parentheses
x^2-2x^2+x+x+4x+1-2=0
We add all the numbers together, and all the variables
-1x^2+6x-1=0
a = -1; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·(-1)·(-1)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{2}}{2*-1}=\frac{-6-4\sqrt{2}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{2}}{2*-1}=\frac{-6+4\sqrt{2}}{-2} $

See similar equations:

| -23x+14-7x+6=10x-17+3x+4 | | -158=-26+a/15 | | 11-3k=-13 | | |2x-7|=23 | | 33-w/9=25 | | (9-3)X(5-2)=x | | (9-3)*(5-2)=x | | 4z+64=4(4z+4) | | 14.9-3u=5.3 | | -8x-30=7(3-2x) | | 180=20+(2x+25)+x | | 15.4=4.4-2.4r | | -84=-18+h/12 | | 0.10(y-7)+0.08y=0.14y-0.5 | | 22-q/7=17 | | 24-8x=36 | | ((5x-16)^(3)-4)^(3)=216000 | | 11^-4x=12^x-7 | | 5(x+2)=3(x-5)+29 | | 35x-2x-16x+8x=26 | | 30=8(5+x)-4x | | 2v=6-v | | 15u=21+8u | | 14/x=3.86 | | 12(8x+20)=15x+3 | | 7x+5x+2x-11-2-3=180 | | 2/x=x/36 | | 8(2x+4)=10x+6 | | 9/65z=175/85 | | -5÷p=1÷5 | | .5x+13=2.4x+4 | | 72-15=3x+1 |

Equations solver categories