(x+1)(x+2)+4x-10=2x+10x-1

Simple and best practice solution for (x+1)(x+2)+4x-10=2x+10x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+2)+4x-10=2x+10x-1 equation:



(x+1)(x+2)+4x-10=2x+10x-1
We move all terms to the left:
(x+1)(x+2)+4x-10-(2x+10x-1)=0
We add all the numbers together, and all the variables
(x+1)(x+2)+4x-(12x-1)-10=0
We add all the numbers together, and all the variables
4x+(x+1)(x+2)-(12x-1)-10=0
We get rid of parentheses
4x+(x+1)(x+2)-12x+1-10=0
We multiply parentheses ..
(+x^2+2x+x+2)+4x-12x+1-10=0
We add all the numbers together, and all the variables
(+x^2+2x+x+2)-8x-9=0
We get rid of parentheses
x^2+2x+x-8x+2-9=0
We add all the numbers together, and all the variables
x^2-5x-7=0
a = 1; b = -5; c = -7;
Δ = b2-4ac
Δ = -52-4·1·(-7)
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{53}}{2*1}=\frac{5-\sqrt{53}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{53}}{2*1}=\frac{5+\sqrt{53}}{2} $

See similar equations:

| 9(n-2)=29 | | (3+8x)-(6x-1)=8 | | 190=-5(-1+6x)+5 | | 21=-15a+1 | | 1=1/4n+1 | | 4=1/2(x-6 | | (x+1)(x+2)+4x-10=x+10x-1 | | x+72=86 | | 2n-7=-16 | | .5x+0.45(50)=25.5 | | x+16+x+9=13 | | 2x-2=7x+16 | | 6+5-4x=1-4# | | C(x)=0.3x^2-10x+7 | | 3.4=6.8a | | 17n-22=12 | | -3(y+3)=2+y3 | | 50-8x=5x-41 | | (5p)+p=3 | | 6/x-4=-6/x+5+18/(x-4)(x+5) | | (b/4)+(1/9)=19 | | 2(3x-4)=−(8-6x) | | 1-8t=t-26 | | -8y+y=37y-7 | | 1x+4=9x+12 | | 7x/4=41/3 | | 6(4s+12=8(3s-14) | | 1/4(c+8)=12 | | x-20=5(7×-4) | | -16x+5=-10x+11 | | 17-10g=-7g-18+2 | | 0g=8 |

Equations solver categories