If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+1)(x+2)+4x-10=x+10x-1
We move all terms to the left:
(x+1)(x+2)+4x-10-(x+10x-1)=0
We add all the numbers together, and all the variables
(x+1)(x+2)+4x-(11x-1)-10=0
We add all the numbers together, and all the variables
4x+(x+1)(x+2)-(11x-1)-10=0
We get rid of parentheses
4x+(x+1)(x+2)-11x+1-10=0
We multiply parentheses ..
(+x^2+2x+x+2)+4x-11x+1-10=0
We add all the numbers together, and all the variables
(+x^2+2x+x+2)-7x-9=0
We get rid of parentheses
x^2+2x+x-7x+2-9=0
We add all the numbers together, and all the variables
x^2-4x-7=0
a = 1; b = -4; c = -7;
Δ = b2-4ac
Δ = -42-4·1·(-7)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{11}}{2*1}=\frac{4-2\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{11}}{2*1}=\frac{4+2\sqrt{11}}{2} $
| x+72=86 | | 2n-7=-16 | | .5x+0.45(50)=25.5 | | x+16+x+9=13 | | 2x-2=7x+16 | | 6+5-4x=1-4# | | C(x)=0.3x^2-10x+7 | | 3.4=6.8a | | 17n-22=12 | | -3(y+3)=2+y3 | | 50-8x=5x-41 | | (5p)+p=3 | | 6/x-4=-6/x+5+18/(x-4)(x+5) | | (b/4)+(1/9)=19 | | 2(3x-4)=−(8-6x) | | 1-8t=t-26 | | -8y+y=37y-7 | | 1x+4=9x+12 | | 7x/4=41/3 | | 6(4s+12=8(3s-14) | | 1/4(c+8)=12 | | x-20=5(7×-4) | | -16x+5=-10x+11 | | 17-10g=-7g-18+2 | | 0g=8 | | 5(2x+9)=-45+30 | | 88.1−2.3f=72.46 | | -5(2-n)-2(1-7n)=2n-3+8n | | 2/3q-1/12=q+1/ | | 4/9=3x-9 | | 5(6-v)=v+21 | | -7x-35=2x-8 |