(x+1)(x+3)(x+2)(x+4)+1=0

Simple and best practice solution for (x+1)(x+3)(x+2)(x+4)+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x+3)(x+2)(x+4)+1=0 equation:


Simplifying
(x + 1)(x + 3)(x + 2)(x + 4) + 1 = 0

Reorder the terms:
(1 + x)(x + 3)(x + 2)(x + 4) + 1 = 0

Reorder the terms:
(1 + x)(3 + x)(x + 2)(x + 4) + 1 = 0

Reorder the terms:
(1 + x)(3 + x)(2 + x)(x + 4) + 1 = 0

Reorder the terms:
(1 + x)(3 + x)(2 + x)(4 + x) + 1 = 0

Multiply (1 + x) * (3 + x)
(1(3 + x) + x(3 + x))(2 + x)(4 + x) + 1 = 0
((3 * 1 + x * 1) + x(3 + x))(2 + x)(4 + x) + 1 = 0
((3 + 1x) + x(3 + x))(2 + x)(4 + x) + 1 = 0
(3 + 1x + (3 * x + x * x))(2 + x)(4 + x) + 1 = 0
(3 + 1x + (3x + x2))(2 + x)(4 + x) + 1 = 0

Combine like terms: 1x + 3x = 4x
(3 + 4x + x2)(2 + x)(4 + x) + 1 = 0

Multiply (3 + 4x + x2) * (2 + x)
(3(2 + x) + 4x * (2 + x) + x2(2 + x))(4 + x) + 1 = 0
((2 * 3 + x * 3) + 4x * (2 + x) + x2(2 + x))(4 + x) + 1 = 0
((6 + 3x) + 4x * (2 + x) + x2(2 + x))(4 + x) + 1 = 0
(6 + 3x + (2 * 4x + x * 4x) + x2(2 + x))(4 + x) + 1 = 0
(6 + 3x + (8x + 4x2) + x2(2 + x))(4 + x) + 1 = 0
(6 + 3x + 8x + 4x2 + (2 * x2 + x * x2))(4 + x) + 1 = 0
(6 + 3x + 8x + 4x2 + (2x2 + x3))(4 + x) + 1 = 0

Combine like terms: 3x + 8x = 11x
(6 + 11x + 4x2 + 2x2 + x3)(4 + x) + 1 = 0

Combine like terms: 4x2 + 2x2 = 6x2
(6 + 11x + 6x2 + x3)(4 + x) + 1 = 0

Multiply (6 + 11x + 6x2 + x3) * (4 + x)
(6(4 + x) + 11x * (4 + x) + 6x2 * (4 + x) + x3(4 + x)) + 1 = 0
((4 * 6 + x * 6) + 11x * (4 + x) + 6x2 * (4 + x) + x3(4 + x)) + 1 = 0
((24 + 6x) + 11x * (4 + x) + 6x2 * (4 + x) + x3(4 + x)) + 1 = 0
(24 + 6x + (4 * 11x + x * 11x) + 6x2 * (4 + x) + x3(4 + x)) + 1 = 0
(24 + 6x + (44x + 11x2) + 6x2 * (4 + x) + x3(4 + x)) + 1 = 0
(24 + 6x + 44x + 11x2 + (4 * 6x2 + x * 6x2) + x3(4 + x)) + 1 = 0
(24 + 6x + 44x + 11x2 + (24x2 + 6x3) + x3(4 + x)) + 1 = 0
(24 + 6x + 44x + 11x2 + 24x2 + 6x3 + (4 * x3 + x * x3)) + 1 = 0
(24 + 6x + 44x + 11x2 + 24x2 + 6x3 + (4x3 + x4)) + 1 = 0

Combine like terms: 6x + 44x = 50x
(24 + 50x + 11x2 + 24x2 + 6x3 + 4x3 + x4) + 1 = 0

Combine like terms: 11x2 + 24x2 = 35x2
(24 + 50x + 35x2 + 6x3 + 4x3 + x4) + 1 = 0

Combine like terms: 6x3 + 4x3 = 10x3
(24 + 50x + 35x2 + 10x3 + x4) + 1 = 0

Reorder the terms:
24 + 1 + 50x + 35x2 + 10x3 + x4 = 0

Combine like terms: 24 + 1 = 25
25 + 50x + 35x2 + 10x3 + x4 = 0

Solving
25 + 50x + 35x2 + 10x3 + x4 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| x+x+y=5.50 | | P=3-0.0025Q | | 12x-3x^2=9 | | 12x-3b^2=9 | | -x^3+8x^2-16x+8=0 | | 2/3(x^2)-1/3(x)-1=0 | | ln(x)=37 | | X*y=365 | | X=log(150) | | (1/5)n-12=-3 | | 1/5(n)-12=-3 | | x^2+24=-5x | | 7x-x/3=80 | | ((1+t)/(t^3))*t^2=1 | | (x-1)(x+1)=x^2-2x+3 | | X^5-16x+9=0 | | .-7x+3=-15/2 | | -7x+3=-15/24 | | f(x)=1.8x+4 | | 2.3/2x-15=-12 | | 6-1/33 | | 6-1/3x3 | | 3y-12x=4z | | 1/x^2+1.8x-2.8 | | x^3-12x-24=0 | | 2m^2-10m=5m-18 | | (3x-1)(2x-2)=6x^2-18 | | (t+2)(t-3)=t+2 | | (3s+1)(s-4)=-5(s-1) | | 2/3(x+3/5)=7/2 | | 2=​2/​m−7 | | 2x^2-2x+k^2-2k+1=0 |

Equations solver categories