(x+1)(x-3)=2x(x+3)

Simple and best practice solution for (x+1)(x-3)=2x(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x-3)=2x(x+3) equation:



(x+1)(x-3)=2x(x+3)
We move all terms to the left:
(x+1)(x-3)-(2x(x+3))=0
We multiply parentheses ..
(+x^2-3x+x-3)-(2x(x+3))=0
We calculate terms in parentheses: -(2x(x+3)), so:
2x(x+3)
We multiply parentheses
2x^2+6x
Back to the equation:
-(2x^2+6x)
We get rid of parentheses
x^2-2x^2-3x+x-6x-3=0
We add all the numbers together, and all the variables
-1x^2-8x-3=0
a = -1; b = -8; c = -3;
Δ = b2-4ac
Δ = -82-4·(-1)·(-3)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{13}}{2*-1}=\frac{8-2\sqrt{13}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{13}}{2*-1}=\frac{8+2\sqrt{13}}{-2} $

See similar equations:

| 4g=-3g-7 | | 2.2y+8.2=4.2y-3.1 | | 9x2–4=0 | | ‐5x – 3 =2x – 18 | | 9w2+3=0 | | -27m=m/9 | | 30x/5x=6* | | 3r-7=-37 | | 4x+10=17x-43=180 | | 5=–2r2 | | 7-2a=17 | | 3p2–6=0 | | 6r2+7r=0 | | 8r2+7r+3=0 | | z2+3z+6=0 | | 50=50/2x | | 4-2*x=x+3 | | (21x+20)=(13x-10) | | 9y-4=94 | | 2(x+3)=2(x+3)=22 | | 17(d+13)=–17 | | 3x-9x+4=16 | | v2+2v–1=0 | | p+7p-5p=24 | | 2r2+7r+1=0 | | 21x+20=13x-10 | | 2(3x-10)=9 | | 3-2(2x=1)=x+17 | | 4x+70+2x+100+130=180 | | 3/1=4/x | | -j+3=8 | | 4x+70+2x+100+15=180 |

Equations solver categories